Show last authors
1 {{box cssClass="floatinginfobox" title="**Contents**"}}
2 {{toc/}}
3 {{/box}}
4
5 Following the analysis calculation, the applied reinforcement (longitudinal bars, stirrups etc.) can be designed automatically and refined manually for concrete beams, columns, truss members, slabs, walls and shell elements. The applied reinforcement can be considered in cracked-section analysis.
6
7 The table summarizes the available RC design features and its analysis-related effect (cracked-section analysis) by FEM-Design module.
8
9 (% class="table-hover" style="width:791px" %)
10 |(% style="background-color:#0076cb; width:236px" %)(% style="color:#ffffff" %)**Design element type**|(% style="background-color:#0076cb; width:197px" %)(% style="color:#ffffff" %)**Design feature**|(% style="background-color:#0076cb; text-align:center; width:100px" %)(% style="color:#ffffff" %)**[[image:1585573773672-406.png]]**|(% style="background-color:#0076cb; text-align:center; width:85px" %)(% style="color:#ffffff" %)**[[image:1585573778330-305.png]]**|(% style="background-color:#0076cb; text-align:center; width:89px" %)(% style="color:#ffffff" %)**[[image:1585573782915-229.png]]**|(% style="background-color:#0076cb; text-align:center; width:81px" %)(% style="color:#ffffff" %)**[[image:1585573787911-559.png]]**
11 |(% colspan="1" rowspan="3" style="width:236px" %)[[image:1585573768201-924.png]] **Bar reinforcement**|(% style="width:197px" %)**Auto design**|(% style="text-align:center; width:100px" %)[[image:1585573853108-966.png]]|(% style="text-align:center; width:85px" %) |(% style="text-align:center; width:89px" %)[[image:1585573874778-224.png]]|(% style="text-align:center; width:81px" %)[[image:1585573871212-244.png]]
12 |(% style="width:197px" %)**Manual design**|(% style="text-align:center; width:100px" %)[[image:1585573855352-957.png]]|(% style="text-align:center; width:85px" %) |(% style="text-align:center; width:89px" %)[[image:1585573869887-398.png]]|(% style="text-align:center; width:81px" %)[[image:1585573877455-535.png]]
13 |(% style="width:197px" %)**Cracked-section analysis**|(% style="text-align:center; width:100px" %)[[image:1585573863236-877.png]]|(% style="text-align:center; width:85px" %) |(% style="text-align:center; width:89px" %)[[image:1585573867197-586.png]]|(% style="text-align:center; width:81px" %)[[image:1585573868480-935.png]]
14 |(% colspan="1" rowspan="3" style="width:236px" %)[[image:1585573831073-133.png]] **// //Surface reinforcement**|(% style="width:197px" %)**Auto design**|(% style="text-align:center; width:100px" %)[[image:1585573879990-961.png]]|(% style="text-align:center; width:85px" %)[[image:1585573864946-861.png]]|(% style="text-align:center; width:89px" %) |(% style="text-align:center; width:81px" %)[[image:1585573890470-132.png]]
15 |(% style="width:197px" %)**Manual design**|(% style="text-align:center; width:100px" %)[[image:1585573878798-454.png]]|(% style="text-align:center; width:85px" %)[[image:1585573866173-113.png]]|(% style="text-align:center; width:89px" %) |(% style="text-align:center; width:81px" %)[[image:1585573888882-302.png]]
16 |(% style="width:197px" %)**Cracked-section analysis**|(% style="text-align:center; width:100px" %)[[image:1585573872383-918.png]]|(% style="text-align:center; width:85px" %)[[image:1585573876182-601.png]]|(% style="text-align:center; width:89px" %) |(% style="text-align:center; width:81px" %)[[image:1585573887836-729.png]]
17 |(% colspan="1" rowspan="3" style="width:236px" %)[[image:1585573835604-175.png]] **// //Punching reinforcement**|(% style="width:197px" %)**Auto design**|(% style="text-align:center; width:100px" %)[[image:1585573883841-134.png]]|(% style="text-align:center; width:85px" %) |(% style="text-align:center; width:89px" %) |(% style="text-align:center; width:81px" %)[[image:1585573886809-630.png]]
18 |(% style="width:197px" %)**Manual design**|(% style="text-align:center; width:100px" %)[[image:1585573882511-646.png]]|(% style="text-align:center; width:85px" %) |(% style="text-align:center; width:89px" %) |(% style="text-align:center; width:81px" %)[[image:1585573873636-923.png]]
19 |(% style="width:197px" %)**Cracked-section analysis**|(% style="text-align:center; width:100px" %)[[image:1585573881472-866.png]]|(% style="text-align:center; width:85px" %) |(% style="text-align:center; width:89px" %) |(% style="text-align:center; width:81px" %)[[image:1585573885212-816.png]]
20
21 Table: RC design features by FEM-Design module
22
23 Global** **//Auto (RC) design// (//Calculate > Design calculations > Auto design all structural elements//) gives applied reinforcement for all concrete elements based on their initial design calculation parameters, //Auto design > Parameters// and optimized to their internal forces and detailed utilization calculations. With //Manual design// you can fine-tune the reinforcement by elements and/or design groups. You can do quick //Auto design// by elements and design groups only instead of global design. Of course, any number of design cycles is executable, so the global //Auto design// can be combined with both previous and additional element-based //Auto designs//.
24
25
26 (% style="width:752px" %)
27 |(% style="background-color:#0076cb; width:41px" %)(% style="color:#ffffff" %)**No.**|(% style="background-color:#0076cb; width:232px" %)(% style="color:#ffffff" %)**Global RC design**|(% style="background-color:#0076cb; width:241px" %)(% style="color:#ffffff" %)**Element-based RC design**|(% style="background-color:#0076cb; width:235px" %)(% style="color:#ffffff" %)**Combined RC design**
28 |(% style="width:41px" %)1|(% style="width:232px" %)[[image:1585573949525-261.png]] //Design calculation parameters//|(% style="width:241px" %)[[image:1585574004114-884.png]] Global //Analysis//|(% style="width:235px" %)[[image:1585573954730-179.png]] //Design calculation parameters//
29 |(% style="width:41px" %)2|(% style="width:232px" %)[[image:1585573993155-430.png]] **Design group**|(% style="width:241px" %)[[image:1585573952090-625.png]] //Design calculation parameters//|(% style="width:235px" %)[[image:1585573997020-936.png]] **Design group**
30 |(% style="width:41px" %)3|(% style="width:232px" %)[[image:1585573961573-424.png]] [[image:1585574043587-844.png]] //Auto design > Parameters//|(% style="width:241px" %)[[image:1585573995063-242.png]] **Design group**|(% style="width:235px" %)[[image:1585573969423-886.png]] [[image:1585574038186-531.png]] //Auto design > Parameters//
31 |(% style="width:41px" %)4|(% style="width:232px" %)[[image:1585574021361-824.png]] Global //Auto design//|(% style="width:241px" %)[[image:1585573963549-317.png]] [[image:1585574041988-785.png]] //Auto design > Parameters//|(% style="width:235px" %)[[image:1585574014808-672.png]] Global //Auto design//
32 |(% style="width:41px" %)5|(% style="width:232px" %)[[image:1585574027271-692.png]] //Manual design// by elements|(% style="width:241px" %)[[image:1585573971635-353.png]] [[image:1585573982722-210.png]] //Auto design// by elements|(% style="width:235px" %)[[image:1585573967310-807.png]] [[image:1585574039894-501.png]] //Auto design > Parameters//
33 |(% style="width:41px" %)6|(% style="width:232px" %)[[image:1585574049901-913.png]] //Apply design changes//|(% style="width:241px" %)[[image:1585574029205-629.png]] //Manual design// by elements|(% style="width:235px" %)[[image:1585573965386-714.png]] [[image:1585573984688-491.png]] //Auto design// by elements
34 |(% style="width:41px" %)7|(% style="width:232px" %)[[image:1585574007870-973.png]] Global //Check//|(% style="width:241px" %)[[image:1585574051562-444.png]] //Apply design changes//|(% style="width:235px" %)[[image:1585574031203-532.png]] //Manual design// by elements
35 |(% style="width:41px" %)8|(% style="width:232px" %)[[image:1585574006165-612.png]] Cracked-section analysis|(% style="width:241px" %)[[image:1585574011057-275.png]] Global //Check//|(% style="width:235px" %)[[image:1585574053024-330.png]] //Apply design changes//
36 |(% style="width:41px" %)9|(% style="width:232px" %)[[image:1585574058339-646.png]] [[//Documentation//>>doc:Manuals.User Manual.Documentation.WebHome]]|(% style="width:241px" %)[[image:1585574009620-444.png]] Cracked-section analysis|(% style="width:235px" %)[[image:1585574016452-368.png]] Global //Check//
37 |(% style="width:41px" %)10|(% style="width:232px" %) |(% style="width:241px" %)[[image:1585574060429-927.png]] [[//Documentation//>>doc:Manuals.User Manual.Documentation.WebHome]]|(% style="width:235px" %)[[image:1585574013079-456.png]] Cracked-section analysis
38 |(% style="width:41px" %)11|(% style="width:232px" %) |(% style="width:241px" %) |(% style="width:235px" %)[[image:1585574061999-364.png]] [[//Documentation//>>doc:Manuals.User Manual.Documentation.WebHome]]
39
40 Table: Recommended steps by design alternatives
41
42 = {{id name="Bar Reinforcement"/}}Bar Reinforcement =
43
44 Bar reinforcement design needs internal forces from **Analysis** calculations applied for //Load combinations// or //Load-groups//, [[image:1585574093992-877.png]] **Buckling length** and initial design settings defined by [[image:1585574099922-322.png]] //Design calculation parameters// and 2^^nd^^ order calculation method by [[image:1585574105384-726.png]]// Configuration.//
45
46
47 [[image:1585574111041-426.png]]
48
49 Figure: Design calculation parameters
50
51
52 [[image:1585574118993-935.png]]
53
54 Figure: Design calculation parameters
55
56 The maximal section distance defines the approximate position of the design sections and so the available sections for detailed results.
57
58 The method for considering imperfections of bars has to be selected, there are three types:
59
60 * Ignore 2^^nd^^ order analysis: The internal forces comes from the 1^^st^^ order results.
61 * Consider 2^^nd^^ order analysis, if available: The internal forces comes from the 2^^nd^^ order results.
62 * 2^^nd^^ order internal forces + 1^^st^^ order design: The internal forces comes from the 2^^nd^^ order results, but the design calculation will be linear.
63
64 == Auto Design ==
65
66 |[[image:1585574140289-593.png]]|Global// Auto design// gives utilization results and suitable reinforcement distribution for all concrete bars of the current project.
67
68 |(% style="width:100px" %)[[image:light.png]]|(% style="width:1390px" %)(((
69 The applied design parameters can be displayed on screen by showing the “//RC bar, design parameters//” object layer, or click [[image:1585573984688-491.png]] //Design// tool of the [[image:1585573967310-807.png]] //Auto design// to show the parameters together with a detailed utilization table. Utilization as colored figure (color palette) can be displayed by selecting //New result > RC bar > Utilization//, and clicking the //Numeric value //tool summarizes the list of maximum utilizations by elements in a dialog.
70 )))
71
72 [[image:1585574194489-978.png]]
73
74 Figure: Global Auto design and utilization results
75
76 |(% style="width:85px" %)[[image:1585574210158-767.png]]|(% style="width:1405px" %)Element-based //Auto design// finds the most suitable position and distribution of longitudinal bars and stirrups for selected unique or grouped members only according to their user-defined design parameters. Initial reinforcement (steel quality, diameter, profile, concrete cover) and design (aggregate, vibration) settings can be set for the concrete members/groups with the [[image:1585574241422-868.png]] //Parameters// tool of //Auto design//.
77
78 [[image:1585574252957-683.png]]
79
80 Figure: Design parameters
81
82 To run element-based design for the load combinations or the maximum of load groups, select the required members and/or group with the //Auto design// command and click [[image:1585574266984-555.png]] //Design// tool. The quick process results applied reinforcement and their checked utilization. Check the //Display table// box to have a look at the overall design results.
83
84 [[image:1585574273830-742.png]]
85
86 Figure: Quick summary of Auto design results
87
88 The upper table shows the design efficiency and the maximal utilization of the designed single members and groups based on the given design parameters. The bottom table (“//Show details//”) displays the utilization details of the bar or the members of the group selected in the upper table.
89
90 (% class="table-hover" style="width:979px" %)
91 |(% style="background-color:#0076cb; width:154px" %) |(% style="background-color:#0076cb; width:453px" %)(% style="color:#ffffff" %)**Meaning**|(% style="background-color:#0076cb; width:369px" %)(% style="color:#ffffff" %)**Note**
92 |(% style="width:154px" %)[[image:1585574282628-966.png]]|(% style="width:453px" %)Suitable reinforcement is available|(% style="width:369px" %)
93 |(% style="width:154px" %)[[image:1585574288796-260.png]]|(% style="width:453px" %)Suitable reinforcement is not available|(% style="width:369px" %)Modify bar profile, material or RC design parameters
94 |(% style="width:154px" %)Group|(% style="width:453px" %)ID of a single bar or a group name|(% style="width:369px" %)
95 |(% style="width:154px" %)Design parameters|(% style="width:453px" %)Applied design parameters|(% style="width:369px" %)
96 |(% style="width:154px" %)Total weight|(% style="width:453px" %)Total weight of applied reinforcement|(% style="width:369px" %)
97 |(% style="width:154px" %)Max|(% style="width:453px" %)Max. utilization of a single bar or the significant member of a group|(% style="width:369px" %)
98 |(% style="width:154px" %)Min|(% style="width:453px" %)Max. utilization of the less significant group member|(% style="width:369px" %)
99 |(% style="width:154px" %)Bar|(% style="width:453px" %)ID of a single bar or a group member|(% style="width:369px" %)
100 |(% style="width:154px" %)SEC|(% style="width:453px" %)Section utilization|(% style="width:369px" %)According to Eurocode 2: 6.1
101 |(% style="width:154px" %)ST|(% style="width:453px" %)Stirrup utilization|(% style="width:369px" %)According to Eurocode 2: 6.2 and 6.3
102 |(% style="width:154px" %)C|(% style="width:453px" %)Concrete utilization|(% style="width:369px" %)According to Eurocode 2: 6.2 and 6.3
103 |(% style="width:154px" %)T|(% style="width:453px" %)Utilization of torsional reinforcement|(% style="width:369px" %)According to Eurocode 2: 6.3
104 |(% style="width:154px" %)CW|(% style="width:453px" %)Utilization for crack width|(% style="width:369px" %)According to Eurocode 2: 7.3
105
106 Table: The meaning of symbols, design parameters and utilization results
107
108 Quick redesign can be done inside the //Utilization// table:
109
110 1. Select a bar or a design group in the upper table.
111 1. Modify the design parameters of the select element under //Parameters//.
112 1. Click //Design//.
113
114 Applied reinforcement generated by //Auto design// can be displayed with:
115
116 * **Detailed result** applied for the displayed utilization result (//New result > RC bar > Utilization//) of a single bar or a group member.
117 * //Manual design //applied for a single bar or a group member to edit the design reinforcement and/or add further longitudinal bars and stirrups.
118
119 == Manual Design ==
120
121 |(% style="width:57px" %)[[image:1585574376098-805.png]]|(% style="width:1433px" %)(((
122 //Manual design// opens a new window in the current project and gives tools to define new (applied) reinforcement in concrete beams, columns and bars, or to modify/edit the reinforcement generated by //Auto design//. The drawing area is divided into two view windows:
123
124 * **Cross-section**
125 It shows the cross-section of the current concrete bar. The definition of new longitudinal bars (sectional position) and stirrups (shape) starts in this window. The position of the cross-section (section view) can be set by moving the section marker in //3D view: //
126 [[image:1585574451276-123.png]]
127 * **3D view**
128 It shows the side view of the concrete bar by default. But, any 2D and 3D view can be set with the //View// menu commands (e.g. general 3D view with //View > Space view//). The start and end pont (and so the length) of longitudinal bars and the position (the distribution) of the stirrups can be defined here.
129 * **Interaction surface view / Result window**
130 In this window 2 types of results can be displayed, Interaction surface view or Summary results. The Ineraction surface shows the section utilization in a graphical way in N-My-Mz coordinate system. By default it is displayed in 3D view, but Horizontal and Vertical cuts can be done.
131 The Summary results can be seen also after the bar is Checked.
132 )))
133
134 [[image:1585574492335-373.png]]
135
136 [[image:1585574497411-900.png]]
137
138 Figure: Working windows of Manual design
139
140 You can choose the required window by clicking inside it or its title.
141
142 |[[image:1585574519415-230.png]]|(((
143 The //Longitudinal bar //tool defines new bars in given insertion points. Set the main properties of the new bar on the tool palette or all properties under //Default settings//.
144
145
146 )))
147
148 (% style="text-align:center" %)
149 [[image:1585574537495-575.png]]
150
151 (% style="text-align: center;" %)
152 Figure: Definition tools and settings of Longitudinal bar
153
154
155 Use one of the following tools to place the new bar in the //Cross-section// view:
156
157 * Clicking in //Cross-section//, the new bar will be placed with its center point.
158 \\Align the new bar to a line/edge by select one in //Cross-section//. Move the mouse to set the bar’s relative position to the selected line/edge: the center point/upper/bottom/left/right surface will be on the line/edge.
159 \\[[image:1585574594615-151.png]]
160 Figure: Placement of a bar aligned to an inner edge of a stirrup
161 \\Align the new bar to a corner defined by two lines/edges. The bar will be tangent for the first and then the second given line.
162 \\[[image:1585574634232-127.png]]
163 Figure: Placement of a bar aligned to a corner of a stirrup
164 *1. Define the group of longitudinal bars by set the number of the horizontal (nc), vertical (nr) bar numbers and the distance between the rows (c)
165 \\[[image:1585574682296-722.png]]
166 Figure: Placement of bar group
167 * The steel bar length can be defined manually by giving the bar’s start and end point in //3D view//.
168
169 (% style="text-align:center" %)
170 [[image:1585574715281-941.png]]
171
172 (% style="text-align: center;" %)
173 Figure: Steel bar length definition
174
175
176 |(% style="width:72px" %)(((
177 [[image:1585574735562-803.png]]
178 )))|(% style="width:1418px" %)(((
179 The //Stirrup //tool defines new stirrups with given shapes. Set the main properties of the new stirrup bars on the tool palette or all properties under //Default settings//.
180
181 [[image:1585574751507-414.png]]
182
183 Figure: Definition tools and settings of Stirrup
184
185 Choose the contour geometry of the new bar and define the bar’s relative position to the contour with //Alignment//, which also defines the final stirrup shape with the //Cover// value in the //Cross-section// view. In the final step, the distribution of the stirrups based on the //Distance //value is defined with a start and an end point in the //3D view//.
186
187 [[image:1585574792425-508.png]]
188
189 Figure: Stirrup geometries
190
191 [[image:1585574806132-660.png]]
192
193 Figure: Placement of stirrups
194 )))
195
196 |(% style="width:106px" %)[[image:light.png]]|(% style="width:1384px" %)The contour defines the stirrup shape, if the //Cover// value is set to 0.
197
198 (% class="table-hover" %)
199 |[[image:1585574885365-773.png]]|You can modify the properties (quality, diameter, profile etc.) of previously defined bar/stirrup reinforcement(s) with the //Properties// tool of //Longitudinal bar// and //Stirrup//.
200 |[[image:1585574877068-421.png]]|(((
201 To exit from //Manual design// with validating the new and modified reinforcement bars and stirrups, click //OK//.
202 )))
203 |[[image:1585574893040-889.png]]|To exit from //Manual design// without accepting the defined and modified reinforcement, click //Cancel//.
204
205 === Result window tools ===
206
207 In Result window tools one can chose the result type to display (interaction surface of the designed bar, or a summary of utilizations for different design checks) and customize displayed results.
208
209 When //Result// window is activated, //Result window tools// pops up. It contains options to control the content of //Result window.//
210
211 [[image:1585574960130-362.png]]
212
213 == Detailed Result ==
214
215 Utilization of RC bars can be displayed in the following cases:
216
217 * After global //Auto design//, you can display utilization of all concrete bars calculated from the suggested applied reinforcement.
218 * When running element-based //Auto design//, utilization can be displayed by designed elements.
219 * After //Manual design//, element-based //Check// displays utilization for selected elements.
220 * After global //Check// done for all bar elements having final applied reinforcement.
221
222 (% border="1" style="width:1174px" %)
223 |(% style="background-color:#0076cb" %)(% style="color:#ffffff" %)**No.**|(% style="background-color:#0076cb; width:256px" %)(% style="color:#ffffff" %)**Global Auto design**|(% style="background-color:#0076cb; width:209px" %)(% style="color:#ffffff" %)**Element-based Auto des.**|(% style="background-color:#0076cb; width:191px" %)(% style="color:#ffffff" %)**Element-based Check**|(% style="background-color:#0076cb; width:470px" %)(% style="color:#ffffff" %)**Global Check**
224 |1|(% style="width:256px" %)[[image:1585575005981-456.png]] //Calculate > Design calculation > Auto design all structural elements//|(% style="width:209px" %)[[image:1585575049743-145.png]] //Auto design//|(% style="width:191px" %)(((
225 [[image:1585575051197-655.png]] //Auto design// and/or
226
227 [[image:1585575059246-927.png]] //Manual design//
228 )))|(% style="width:470px" %)(((
229 [[image:1585575052733-563.png]] //Auto design// and/or
230
231 [[image:1585575060959-401.png]] //Manual design//
232 )))
233 |2|(% style="width:256px" %)[[image:1585575031937-940.png]] //New result>RC bar//|(% style="width:209px" %)[[image:1585575033517-591.png]] //New result>RC bar//|(% style="width:191px" %)[[image:1585575043780-535.png]] //Check//|(% style="width:470px" %)[[image:1585575066490-892.png]] Apply changes
234 |3|(% style="width:256px" %) |(% style="width:209px" %) |(% style="width:191px" %)[[image:1585575035131-212.png]] //New result>RC bar//|(% style="width:470px" %)[[image:1585575009710-257.png]] //Calculate > Design calculation > Auto design all structural elements//
235 |4|(% style="width:256px" %) |(% style="width:209px" %) |(% style="width:191px" %) |(% style="width:470px" %)[[image:1585575036716-815.png]] //New result>RC bar//
236
237 Table: Steps of displaying RC bar utilization by different design cases
238
239 |(((
240 [[image:1585575107870-878.png]]
241 )))|Utilization displayed with //New result// appears for all designed bars. The utilization components for a bar/design group can be displayed with //Detailed result//.
242
243 //Detailed result// opens a new windows in the current project after selecting a bar/group member, which display:
244
245 * **Applied reinforcement**
246 The figure gives the distribution of the applied reinforcement.
247 [[image:1585575156969-401.png]]
248 [[image:1585575173680-383.png]]
249 [[image:1585575182146-966.png]]
250 * **Cross-section data**
251 The figure gives the cross-section datas: height, width, area, moment of inertias.
252 \\[[image:1585575222649-783.png]]
253 **Figure: Cross-section datas**
254
255 * **Material properties**
256 In Materials section, the program shows the material properties of the applied concrete’s and reinforcement, e.g. compression strength (f,,ck,,), the mean tensile strength (f,,ctm,,), mean Young modulus (E,,cm,,).
257 [[image:1585576295877-304.png]]
258 Figure: Material properties
259
260 * **Calculation formulas**
261 This contains the EN1992-1-1 formulas for checking RC bar elements, the substitutions in the formulas and the calculation table for each cross section. In the table, the amount of cross-section calculations can be set in the Display options.
262 [[image:1585576327858-639.png]]
263 Figure: Formulae
264
265 * **Detailed calculation tables**
266 Calculation details and final values are collected in tables sorted by checking types and under utilization graphs by default. Column number depends on the number of calculation sections or the table settings defined with **//Display options//**.
267 \\[[image:1585576356168-669.png]]
268 Figure: Detailed calculation table
269 * **Stress-strain graphs**
270 Different colors display the strain (red) and the concrete stress (cyan) curves grouped by //Section utilization// (ultimate limit states) and //Crack width//( serviceability limit states). Also the compressed concrete zones are shown with cyan fills in the calculation sections. The number of displayed sections can be set with **Display options**.
271 [[image:1585576382509-523.png]]
272 Figure: Stress-strain graphs by sections
273 * **Utilization graphs**
274 //Section// (Eurocode 2: 6.1), //Stirrup// (6.2, 6.3), //Concrete// (6.2, 6.3), //Torsional reinforcement// (6.3) and //Crack width// (7.3) utilization graphs together with a //Summary// graph are displayed with legends by default. Numeric values can be inquired in the calculation sections (**//Design calculation parameters//** sets the maximum distance of sections).
275 [[image:1585576405132-160.png]]
276 Figure: Utilization graph
277
278 [[image:1585576419524-426.png]]// Tabmenu// contains the following tools and settings:
279
280 * **Selection of element to display**
281 You can choose a unique or a design group member from the drop-down lists to display its detailed results mentioned before. Each row displays the ID and the maximum utilization of a member. In case of a design group, “Maximum” means the significant member having the maximum utilization.
282 [[image:1585576431066-730.png]]
283 Figure: Selection of a unique or a group member
284 * **Selection of design load**
285 Depending on RC design was done for load combinations or load groups, a load combination or the maximum or a significant component of load groups can be selected for detailed results. Each row displays the name of the load combination/load group component and its utilization effect. “Maximum” means the significant load combination or component of load groups.
286 [[image:1585576462921-436.png]]
287 Figure: Selection from design loads
288 * [[image:1585576488674-207.png]] **Auto design**
289 Quick //Auto design// can be done for the currently displayed unique/group member. Its design parameters can be set/modified in the appearing dialog, and then clicking //OK// starts RC design that updates all detailed result figures and tables.
290 * (((
291 [[image:1585576562395-771.png]] **Manual design**
292 (% class="wikiinternallink" %)**Manual design**(%%) can be launched directly for the currently displayed unique/group member. Returning from reinforcement editing updates all detailed result figures and tables.
293 )))
294 * (((
295 [[image:1585576602329-437.png]] **Display options**
296 The content and the appearance of the detailed result can be set with //Display options//. For tables or stress-strain graphs, you can choose all, maximum and characteristic calculation sections to display.
297 \\[[image:1585576584922-303.png]]
298 Figure: Display options of Detailed result
299 )))
300 * (((
301 [[image:1585576722081-131.png]] **Go to**
302 Navigate in the //RC bar detailed result window //by selecting the required design type in the drop-down list. It is useful when you are in zoomed view.
303 )))
304
305 [[image:1585576635456-709.png]] Click //Tools > Add view to document// to place all figures and tables or specified details only into [[//Documentation//>>doc:Manuals.User Manual.Documentation.WebHome]].
306
307 |(% style="width:107px" %)[[image:light.png]]|(% style="width:1383px" %)Export RC bar reinforcement into *.dwg or *.dxf file format by clicking File/Export to/Export to AutoCAD…
308
309 = {{id name="Surface Reinforcement"/}}Surface Reinforcement =
310
311 Surface reinforcement design needs internal forces from //Analysis// calculations applied for //Load combinations// or //Load-groups// and initial reinforcement properties (direction, shape, steel quality, diameter and concrete cover) defined by [[image:1585577052509-329.png]] //Design calculation parameters//.
312
313 (% style="text-align:center" %)
314 [[image:1585577056793-788.png]]
315
316 (% style="text-align: center;" %)
317 Figure: Initial reinforcement settings
318
319
320 |(% style="width:114px" %)[[image:warning.png]]|(% style="width:1376px" %)The reinforcement shape (//Straight/Centric//) and the bar directions (//x’/y’/r/t//) set by //Design calculation parameters// will be fixed parameters in //Auto// and //Manual design//, so only they can be edited/modified only with //Design calculation parameters//.
321
322 |(% style="width:114px" %)[[image:warning.png]]|(% style="width:1376px" %)Although all design results can be calculated for all reinforcement types, //Auto design// does not work for the //Centric// reinforcement! Only //Manual design// can be used to define and edit the required centric reinforcement area.
323
324 A [[Plate>>doc:Manuals.User Manual.Structure definition.Plate (Geometry).WebHome]] or [[Wall>>doc:Manuals.User Manual.Structure definition.Wall (Geometry).WebHome]] can be specified as single layer reinforced by defining “Single layer reinforcement” Calculation parameter for it.
325
326 (% style="text-align:center" %)
327 [[image:1585577157011-465.png]]
328
329 (% style="text-align: center;" %)
330 Figure: Single layer reinforcement definition
331
332 In the Calculation parameters dialog the User can define the followings:
333
334 * the quality and diameter of the reinforcement for both directions,
335 * the direction of the bottom layer,
336 * the distance of the reinforcement from the centreline,
337 * the allowed crack width on the bottom and on the top of the structure.
338
339 (% style="text-align:center" %)
340 [[image:1585577168021-584.png]]
341
342 (% style="text-align: center;" %)
343 Figure: Calculation parameters for single layer reinfrocement
344
345 |(% style="width:93px" %)[[image:light.png]]|(% style="width:1397px" %)(((
346 Crack width values that exceed the specified limit are displayed with a different colour. The maximum allowed value of crack width can be set at the //Calculation parameters// ([[image:1585577233282-421.png]] ). At the //Display options //([[image:1585577238171-668.png]] ), the weight, scale and colour of the crack lines can be defined.
347
348 [[image:1585577247912-522.png]]
349 )))
350
351 If a shell has “Single layer reinforcement” Calculation parameter, its Design parameter can be modified only if “Single layer reinforcement” option is selected in Auto design/Parameters.
352
353 [[image:1585577261014-979.png]]
354
355 Figure: Auto design parameters of single layer reinforcement
356
357 In case of Manual design, single layer reinforcement can be placed only on „Mid, x’/r” and „Mid, y’/t” layers.
358
359 [[image:1585577270520-105.png]]
360
361 |(% style="width:114px" %)[[image:warning.png]]|(% style="width:1376px" %)Single and double layer reinforcements cannot be used in the same Plate or Wall element.
362
363 == Auto Design ==
364
365 |(% style="width:72px" %)[[image:1585577320756-735.png]]|(% style="width:1418px" %)(((
366 Global// Auto design// gives design force and required reinforcement results and suitable applied reinforcement for all concrete surfaces of the current project. Furthermore, //Auto design// calculates missing reinforcement and crack width based on the determined applied reinforcement.
367
368 [[image:1585577344168-585.png]]
369
370 Figure: Global Auto design and its result
371 )))
372 |(% style="width:72px" %)[[image:1585577325289-495.png]]|(% style="width:1418px" %)(((
373 Element-based //Auto design// finds the most suitable top and bottom (or mid) reinforcement for selected concrete plate, wall and shell elements or element groups only according to their internal forces and design parameters. Initial settings of the base net and additional reinforcement by positions (//Bottom face/Top face/Mid face//) and directions (//x’/y’/r/t//) can be set with the [[image:1585577376339-640.png]] //Parameters// tool of //Auto design//.
374
375 [[image:1585577386626-149.png]]
376
377 [[image:1585577394393-369.png]]
378
379 Figure: Design parameters
380 )))
381
382 |(% style="width:114px" %)[[image:warning.png]]|(% style="width:1376px" %)The minimum concrete cover together with bar directions is derived from //Design calculation parameters// settings.
383
384 To run element-based design for the load combinations or the maximum of load groups, select the required members and/or group with the //Auto design// command and click [[image:1585577441200-429.png]] //Design// tool. The quick process finds the suitable bar diameter for the additional reinforcement from the defined diameter range, calculates the bars’ utilization and distributes top and bottom reinforcement where required.
385
386 |[[image:1585577459680-161.png]]|The placed bars can be displayed by their directions and positions with the navigator icons of the //Reinforcement layer// tool palette.
387 |[[image:1585577463865-302.png]]|The generated applied reinforcement is also visible in Manual design, where additional reinforcement can be defined or the current state can be edited.
388
389 |(% style="width:114px" %)[[image:warning.png]]|(% style="width:1376px" %)In case of design groups, the applied reinforcement appears only at the Master group member.
390
391 Check the tool palette’s //Display table// box to have a look at the overall utilization results given for the designed surface elements or design groups.
392
393 [[image:1585577520739-824.png]]
394
395 Figure: Quick summary of Auto design results
396
397 The upper table shows the design efficiency and the maximal utilization of the designed single elements and groups based on the given design parameters. The bottom table displays the utilization details of the surface element or the elements of the group selected in the upper table.
398
399 (% class="table-hover" style="width:850px" %)
400 |(% style="background-color:#0076cb" %) |(% style="background-color:#0076cb; width:507px" %)(% style="color:#ffffff" %)**Meaning**
401 |[[image:1585577530683-910.png]]|(% style="width:507px" %)Suitable reinforcement is available
402 |[[image:1585577535599-209.png]]|(% style="width:507px" %)(((
403 Suitable reinforcement is not available
404
405 Note: Modify the element thickness, material or RC design parameters.
406 )))
407 |Group|(% style="width:507px" %)ID of a single element or a group name
408 |Design parameters|(% style="width:507px" %)Main applied design parameters
409 |Total weight|(% style="width:507px" %)Total weight of applied reinforcement
410 |Max|(% style="width:507px" %)Max. utilization of a single element or the significant member of a group
411 |Min|(% style="width:507px" %)Max. utilization of the less significant group member
412 |Shell|(% style="width:507px" %)ID of a single element or a group member
413 |RBX|(% style="width:507px" %)Utilization of bottom x’/r reinforcement
414 |RBY|(% style="width:507px" %)Utilization of bottom y’/t reinforcement
415 |RTX|(% style="width:507px" %)Utilization of top x’/r reinforcement
416 |RTY|(% style="width:507px" %)Utilization of top y’/t reinforcement
417 |CWB|(% style="width:507px" %)Utilization for crack width on the bottom face
418 |CWT|(% style="width:507px" %)Utilization for crack width on the top face
419
420 Table: The meaning of symbols, design parameters and utilization results
421
422 Quick redesign can be done inside the //Utilization// table:
423
424 1. Select a surface element or a design group in the upper table.
425 1. Modify the design parameters of the current elements under //Parameters//.
426 1. If the selected surface elements already contain applied reinforcement defined by //Manual design// or earlier //Auto design//, you can delete it by activating [[image:1585577595890-695.png]] on the //Auto design// tool palette.
427 1. Click //Design//.
428
429 == Manual Design ==
430
431 [[image:1585577613388-525.png]] //Manual design// gives tools to define new (applied) reinforcement in concrete plates, walls and shells, or to modify/redefine the reinforcement generated by //Auto design//.
432
433 [[image:1585577623132-868.png]]
434
435 Figure: Manual design tools
436
437 |(% style="width:93px" %)[[image:light.png]]|(% style="width:1397px" %)(((
438 If needed, applied reinforcement defined earlier by //Auto design// or earlier //Manual design// can be deleted with //Edit > Erase//. The geometry of the applied reinforcement regions can be edited with the region-related //Edit// commands such as //Region operations//.
439 )))
440
441 |[[image:1585577688421-252.png]]|To define new reinforcement in a surface element, first choose the same reinforcement shape (//Straight/Centric//) set earlier for the surface element with Design calculation parameters.
442
443 [[image:1585577712826-355.png]] Choose the geometry of the new surface reinforcement.
444
445 Choose the reinforcement layer with [[image:1585577719300-795.png]]
446
447 |[[image:1585577761264-778.png]]|Set the position (//Bottom face/Top face/Mid face//) of the new surface reinforcement.
448 |[[image:1585577765553-184.png]]|Set the direction (//x’/r/y’/t//) of the new surface reinforcement.
449
450 All parameter of the new reinforcement bars can be set under //Default settings// or the main parameters on the //Manual design// tool palette.
451
452 According to the geometry place the surface reinforcement with its required points. The new surface reinforcement will be situated parallel with the plane of the host element with the defined concrete cover thickness.
453
454 (% style="text-align:center" %)
455 [[image:1585577789380-876.png]]
456
457 (% style="text-align: center;" %)
458 Figure: Additional reinforcement defined with Manual design
459
460 |(% style="width:114px" %)[[image:warning.png]]|(% style="width:1376px" %)In case of design groups, the applied reinforcement of the group Master is editable only.
461
462 |(% style="width:113px" %)[[image:light.png]]|(% style="width:1377px" %)(((
463 The active layer will automatically follow the result displayed: e.g., when showing stresses ont he top surface of a slab, the top layer of reinforcement will be activated.
464 )))
465
466 |(% style="width:69px" %)[[image:1585577862999-764.png]]|(% style="width:1421px" %)You can modify the properties (quality, diameter, spacing, cover) of previously defined surface reinforcement(s) with the //Properties// tool of //Manual design//.
467 |(% style="width:69px" %)[[image:1585577867468-703.png]]|(% style="width:1421px" %)Running global// //(//Calculate > Design calculations > Check//) or element-based //Check// the program gives //Applied reinforcement// result, so the applied area of surface elements can be displayed with //Color palette//, //Contour lines//, //Graph// or //Sections mode//.
468
469 [[image:1585577900777-186.png]]
470
471 Figure: Applied reinforcement area displayed with Graph, Color palette, Contour lines, Sections and Bi-direction mode
472
473 == Shear capacity ==
474
475 FD calculates RC shells (//3D Plate, Wall//) shear capacity and their results can be seen from //New result / RC Design / Shear capacity.// These results can be displayed in //Graph, Contour Line, Color palette //and //Section //format.
476
477 [[image:1585577917181-977.png]]
478
479 //No shear regions//
480
481 This is a specific region which allows to neglect shear in it. When entering RC tab, automatic //No shear// regions are generated for RC plates,
482
483 * at column intersection points
484 * along wall intersection lines
485 * at point and line supports.
486
487 Width of these regions depends on plate thickness and a factor that can be modified. One can also edit or inactivate these regions, but they cannot be completely deleted. User can also define//No shear region//s manually by launching //No shear region// command.
488
489 [[image:1585577926450-338.png]]
490
491 Properties can only be applied for automatically generated //No shear// regions. Their x factor can be modified and they can be set to Inactive. With //Reset// option, automatically generated //No shear //regions can be set to default shape.
492
493 [[image:1585577933173-132.png]]
494
495 == Shell buckling ==
496
497 The buckling problem of the shell is transformed to the buckling of equivalent columns made from the shell, on which the second order resistance and utilization is calculated.
498
499 |[[image:warning.png]]|Only RC Plane plates and Plane walls with straight reinforcement and uniform thickness are suitable for shell buckling calculation.
500
501 The calculation process is based on so-called buckling regions, which can be defined at //RC design/Surface reinforcement/Buckling length.//
502
503 (% style="text-align:center" %)
504 [[image:1585577974695-846.png]]
505
506 Each buckling region on the shell has a corresponding buckling factor (beta) and a direction vector in the plane of the shell. The former will be used to calculate the buckling length of the equivalent column, while the latter one specifies the x’ longitudinal axis of this column. By default, FEM-Design generates one buckling region on each RC wall and plate. Default buckling direction is vertical on walls, and parallel with the local x axis on plates**.  Buckling factor is set to 0.0 on all shells in order to let the User decide whether this calculation is needed or not, since it is quite time consuming**.
507
508 |[[image:light.png]]|Shells with zero buckling factor will not be considered for shell buckling calculation, but zero utilization is set for them.
509
510 The default buckling regions can be modified by adding new regions to the shell. One shell may have more buckling regions with different beta factor and direction vector, but the shell must be completely covered by these regions.
511
512 [[image:1585578009012-980.png]]
513
514 During the checking process, the program generates equivalent bar(s) from the shell based on its material, thickness and reinforcement. This bar is checked as an RC bar: Its utilization is calculated by determining its second order internal forces and resistance.
515
516 The calculation process consists of the following steps:
517
518 1. As other shell design calculations, the shell buckling is also calculated in every node of the shell (only where there is a buckling region with non-zero beta value).
519 [[image:1585578021942-234.png]]
520 1. An equivalent bar is generated for the examined node as follows. The edges of the shell are intersected by the ray determined by the node and the direction vector of the corresponding buckling region. The two intersection points are taken as the start and the end point of the equivalent bars.(((
521 |(% style="width:110px" %)[[image:warning.png]]|(% style="width:1340px" %)Note that this intersection is always made with the edges of the shell and not with the edges of the buckling region corresponding to the node! If a node is on the border of two or more buckling regions, it is calculated with both different beta values and direction vectors, and the higher utilization will be used.
522
523 [[image:1585578078770-899.png]]
524
525 )))
526 1. The cross section of the equivalent bar is 1 m wide and its height equals to the thickness of the shell. Along the bar, the applied reinforcement of the shell is transformed into the direction of the bar and placed into it.
527 [[image:1585578130458-333.png]]
528 The checking process is executed section by section along the bar. The distance between these sections is given by //Division length of substitute column// parameter in Calculation parameter dialog (see the lower figure). Internal forces acting at these sections are calculated by transforming shell internal forces at the section point into the coordinate system of the column. As the buckling direction of shells is perpendicular to its plane, we need the equivalent bar’s normal force and moment vector in the plane of the shell for the calculation.
529 \\[[image:1585578173612-713.png]]
530 1. Once the first order internal forces are obtained in every section, the second order internal forces are calculated based on the //nominal stiffness// or //nominal curvature// method, according to the configuration settings. The only difference in the checking process of a real bar and this equivalent bar is that now the eccentricity coming from the second order effects are applied only perpendicularly to the plane of the shell. In other words, the out-of-plane normal force has eccentricity only along the z’ axis of the shell. This modification is in harmony with the fact that the buckling direction of the shell is perpendicular to the plane.
531 [[image:1585578216982-698.png]]
532 1. Finally, based on the second order internal forces, the utilization is calculated for every cross section of the equivalent bar (based on the interaction curve), and the highest section utilization is assigned to the node.
533
534 Shell buckling calculations are available for //Load combinations//, //Maximum of load combinations// and //Maximum of load groups//. The utilization results can be displayed in the //New result/RC shell/Shell buckling/Utilization//
535
536 (% style="text-align:center" %)
537 [[image:1585578251132-617.png]]
538
539 Some details of the calculation can be obtained by listing //RC design/Load combinations/Shell, buckling //table. Also, wall buckling utilization appears in the //Shell, Utilization// list.
540
541 (% style="text-align:center" %)
542 [[image:1585578261812-195.png]]
543
544 (% style="text-align:center" %)
545 [[image:1585578266824-221.png]]
546
547 Every plate and wall has one result, containing the coordinates of the dominant section, the corresponding reinforcement, first and second order internal forces together with the capacity and buckling factor.
548
549 = {{id name="Punching Reinforcement"/}}Punching Reinforcement =
550
551 Punching check and design can be done according to Eurocode 2 both in FEM-Design [[image:1585578320296-696.png]] //Plate// and [[image:1585578325188-763.png]]** **//3D Structure// modules. It is recommended to perform after **Surface reinforcement design**, because surface reinforcement influences punching calculations.
552
553 The punching regions are automatically defined by the program at the plate – coumn intersections and you can define them manually.
554
555 * [[image:1585578366463-730.png]] Punching design/check can be done at any point where a punching region is exists. Design and check can be done by these punching zones or by their **design groups**.
556
557 |(% style="width:110px" %)[[image:warning.png]]|(% style="width:1340px" %)The program does not generate punching objects for columns that are connected to more than one slab at the same level.
558
559 Initial properties are needed to be set for punching zones. Use [[image:1585578410543-339.png]] //Calculation parameters// to define the followings:
560
561 [[image:1585578416186-554.png]]
562
563 Figure:Setting β values for punching objects
564
565 * **Beta (β)**
566 According to Eurocode 2, //β// coefficient is taken into account as the effect of any eccentricity of loading. Its value depends on column position. The program offers default standard values for column positions: for corner (β=1.5), for edge (β=1.4) and inside columns (β=1.15). These standard values have to de added manually by selected punching zones or by their groups. If you neglect //β// values, choosing //Calculate automatically// defines them during design/check process and gives accurate results for //β// coefficients (see **Detailed results**).
567 * **Distance of calculated perimeters (d)**
568 \\[[image:1585578440697-758.png]]
569 \\This value is used in slightly different ways in checking and design process:
570 ** Checking:      perimeters to check between u,,1,, and u,,out(,ef) ,,are generated with d distance from each other.
571 ** Design:          searching for u,,out(,ef) ,,perimeter starts from u,,1,, and distance of checked perimeters from the column is increased by the d distance until u,,out(,ef) ,,is found.
572
573 |(% style="width:90px" %)[[image:light.png]]|(% style="width:1400px" %)Calculation parameters are displayed on the model view by the //Punching, calculation parameters// object layer.
574
575 == Auto Design ==
576
577 [[image:1585578552569-657.png]] Global// Auto design// gives utilization results for punching. Auto design applies the **initial punching reinforcement settings**.
578
579 |(% style="width:110px" %)[[image:warning.png]]|(% style="width:1340px" %)Punching design always deletes the existing reinforcement and generates new one.
580
581 === **Defining punching regions** ===
582
583 When clicking on the [[image:1585578595849-773.png]] , the dialog appears:
584
585 [[image:1585578602516-612.png]]
586 Figure: Punching region toolwindow
587
588 First the origin of the local system should be specified, which is also the calculation point for punching. The punching force is taken from the finite element corner node closest to the local system’s origin.
589
590 |(% style="width:90px" %)[[image:light.png]]|(% style="width:1400px" %)**Before analysis, the user should place a fixed point in Finite element tab, where a punching calculation is planned to be performed, because in this way it will be surely a corner node, leading to higher precision in punching calculation.**
591
592 [[image:1585578642562-501.png]]
593 Figure: Punching region example
594
595 If you pick a punching force calculation point away from the region the following appears:
596
597 [[image:1585578649408-130.png]]
598
599 The punching regions can be modified like with Modify region command and **Reset** back to original shape if the punching region was automatically generated.
600
601 [[image:1585578655312-200.png]]
602
603 Punching utilization results can be displayed for the entire model with //New result > RC punching > Utilization//. Maximum utilization in table format can be also shown with //Numeric value//. Detailed utilization results can be asked by unique or grouped punching zones with [[image:1585578664025-752.png]] (see later). Different colors display the adequacy of the checked punching zones.
604
605 [[image:1585578671207-915.png]]
606
607 Figure: Global Auto design and its result
608
609 [[image:1585578689231-274.png]] Element-based //Auto design// checks the utilizations against punching and finds required reinforcement for selected zones and/or design groups of zones. Initial settings can be set for required reinforcement by bended bar, circularly placed stirrup and open stirrup types with the [[image:1585578702891-400.png]] //Parameters// tool of //Auto design//.
610
611 (% style="text-align:center" %)
612 [[image:1585578707506-874.png]]
613
614 (% style="text-align: center;" %)
615 Figure: Design parameters by punching reinforcement type
616
617 The symbols of the design parameters are stored on the //Punching, design parameters// object layer.
618
619 To run element-based design for the load combinations or the maximum of load groups, select the required zones and/or groups with the //Auto design// command and click [[image:1585578723384-537.png]] //Design// tool. The quick process runs detailed utilization and finds the suitable bar diameters for the additional reinforcement.
620
621 Check the tool palette’s //Display table// box to have a look at the overall utilization results.
622
623 [[image:1585578735628-602.png]]
624
625 Figure: Quick summary of Auto design results
626
627 |(% style="width:90px" %)[[image:light.png]]|(% style="width:1400px" %)The ID of design groups can be shown with the //Punching, design groups// object layer.
628
629 The upper table shows the design efficiency and the maximal utilization of the designed punching zones based on the given design parameters. The bottom table displays the utilization details of elements or design members.
630
631 (% class="table-hover" style="width:872px" %)
632 |(% style="background-color:#0076cb; width:195px" %) |(% style="background-color:#0076cb; width:676px" %)(% style="color:#ffffff" %)**Meaning**
633 |(% style="width:195px" %)[[image:1585578773670-419.png]]|(% style="width:676px" %)RC column is suitable for punching without or with shear reinforcement
634 |(% style="width:195px" %)[[image:1585578780446-407.png]]|(% style="width:676px" %)(((
635 Suitable shear reinforcement is not available
636
637 Note: Modify the slabs’ surface reinforcement or the design parameters.
638 )))
639 |(% style="width:195px" %)Group|(% style="width:676px" %)ID of a unique punching zone or design group
640 |(% style="width:195px" %)Design parameters|(% style="width:676px" %)The suitable bar diameter and other design parameters as the reinforcement type
641 |(% style="width:195px" %)Total weight|(% style="width:676px" %)(((
642 * The “-“ symbol displays that no shear reinforcement is applied
643 * Total weight of applied punching reinforcement
644 )))
645 |(% style="width:195px" %)Max|(% style="width:676px" %)Max. utilization of a unique zone or the significant zone of a group
646 |(% style="width:195px" %)Min|(% style="width:676px" %)Max. utilization of the less significant group member
647 |(% style="width:195px" %)Punching|(% style="width:676px" %)ID of a unique column or a design group member
648 |(% style="width:195px" %)CC|(% style="width:676px" %)Utilization for concrete compress
649 |(% style="width:195px" %)CS|(% style="width:676px" %)Utilization for concrete shear
650 |(% style="width:195px" %)RS|(% style="width:676px" %)Utilization for reinforcement shear
651
652 Table: The meaning of symbols, design parameters and utilization results
653
654 Quick redesign can be done inside the //Utilization// table:
655
656 1. Select a punching zone or a design group in the upper table.
657 1. Modify the design parameters of the current elements under //Parameters//.
658 1. Click //Design//.
659
660 |[[image:light.png]]|**Detailed result** summarizes the applied formulas by the design modes and display the applied shear reinforcement (if needed) drawing too.
661
662 == Manual Design ==
663
664 [[image:1585578877098-106.png]]// Manual design// gives tools to define new (applied) punching reinforcement in concrete plates, or to modify/redefine the reinforcement generated by //Auto design//.
665
666 The rules of new reinforcement definition, if predefined reinforcement already exists from //Auto design//:
667
668 * new same-type reinforcement will be added to applied reinforcement,
669 * new different type reinforcement always overwrites the previously defined one, and
670 * new “open stirrup”-type reinforcement always overwrites the previously defined reinforcement even if it was “open stirrup”.
671
672 |(% style="width:72px" %)[[image:1585578927902-910.png]]|(% style="width:1418px" %)(((
673 First choose the type of the new reinforcement. If you would like to modify/refine a previously defined (generated by //Auto design// or defined by //Manual design// in an earlier phase) reinforcement, you also need to set the required type from the drop-down list of //Manual design//. The [[image:1585578970140-217.png]] //Properties// tool of //Manual design// can be used for modifying actions.
674
675 The tools of //Manual design// depends on the selected reinforcement type.
676 )))
677
678 === **Bended bar** ===
679
680 First set the reinforcement properties under //Default settings//, and choose the bar direction according to the local system directions of the related column. Then select the punching zone you would like to be reinforced (with totally new or additional reinforcement) and place the new bars.
681
682 [[image:1585579007646-450.png]]
683
684 Figure: New bended bar
685
686 === **Stirrup, circular** ===
687
688 First set the reinforcement properties under //Default settings//, then select the punching zone you would like to be reinforced, and finally define the circular form with its inner radius.
689
690 [[image:1585579014876-264.png]]
691
692 Figure: New stirrups in circular shape
693
694 === **Stirrup, open** ===
695
696 First set the reinforcement properties under //Default settings//, then select a geometrical shape (e.g. rectangular, circular, polygonal) for the stirrup position. Select the punching zone you would like to be reinforced, and finally define the shape in the model view.
697
698 [[image:1585579028980-429.png]]
699
700 Figure: New open stirrups
701
702 |(% style="width:110px" %)[[image:warning.png]]|(% style="width:1340px" %)In case of design groups, the applied reinforcement of the **group Master** is editable only. Other group members have symbolic reinforcement figure.
703
704 === (% style="color:inherit; font-family:inherit; font-size:23px" %)**Stud rail (general and PSB product)**(%%)**   ** ===
705
706 First set the reinforcement properties, placement shape under //Default settings//, then set the number of studs and select punching region to place the studs.
707
708 [[image:1585579098938-163.png]]
709
710 Figure: New PSB studs
711
712 Running global// //(//Calculate > Design calculations > Check//) or element-based //Check// the program gives utilization result for the applied punching reinforcement.
713
714 == Detailed Result ==
715
716 Utilization of punching reinforcement can be displayed in the following cases:
717
718 * After global //Auto design//, you can display utilization calculated from the suggested applied reinforcement.
719 * When running element-based //Auto design//, utilization can be displayed by designed elements.
720 * After //Manual design//, element-based //Check// displays utilization for selected zones.
721 * Global //Check// done for final applied reinforcement.
722
723 (% border="1" %)
724 |No.|**Global Auto design**|**Element-based Auto des.**|**Element-based Check**|**Global Check**
725 |1|[[image:1585579122274-794.png]] //Calculate > Design calculation > Auto design all structural elements//|[[image:1585579198248-281.png]] //Auto design//|(((
726 [[image:1585579132329-870.png]] //Auto design// and/or
727
728 [[image:1585579157410-183.png]] //Manual design//
729 )))|(((
730 [[image:1585579134972-965.png]] //Auto design// and/or
731
732 [[image:1585579160039-804.png]] //Manual design//
733 )))
734 |2|(((
735 [[image:1585579150594-818.png]] //New result > RC punching//
736 )))|(((
737 [[image:1585579148186-362.png]] //New result > RC punching//
738 )))|[[image:1585579192786-380.png]] //Check//|[[image:1585579203541-107.png]] Apply changes
739 |3| | |(((
740 [[image:1585579145707-274.png]] //New result > RC punching//
741 )))|[[image:1585579125749-481.png]] //Calculate > Design calculation > Check all structural elements//
742 |4| | | |(((
743 [[image:1585579143805-878.png]] //New result > RC punching//
744 )))
745
746 Table: Steps of displaying punching utilization by different design cases
747
748 [[image:1585579213113-622.png]] Utilization displayed with //New result// appears for all designed punching zones. The utilization components with calculation formulas and the applied reinforcement (if needed) can be displayed with //Detailed result//.
749
750 //Detailed result// opens a new window in the current project after selecting a unique zone or a member zone of a design group, which display:
751
752 * **Design parameters and applied reinforcement**
753 The figure displays the calculation perimeters, the design parameters and the applied reinforcement calculated by //Auto design// (if required) or defined in //Manual design//.
754 \\[[image:1585579278621-697.png]]
755 Figure: Calculation perimeters, design parameters and applied reinforcement
756
757 * **Detailed calculation formulas**
758 Calculation details and final values are collected by checking types: //Concrete compression resistance //(Eurocode2: Part 1.1: 6.4.3), //Shear reinforcement resistance// (Part 1.1: 6.4.3) and //Concrete shear resistance// (Part 1.1: 6.4.3). The proper results are displayed in green, while the red result warnings you to repeat design. The content of the utilization checks depends on **Display options**. Not relevant checks can also be hidden.
759 \\[[image:1585579313384-578.png]]
760 Figure: Utilization formulas and tables
761 * **Summary graph**
762 //Summary// graph is displayed with legend by default.
763 [[image:1585579334463-785.png]]
764 Figure: Utilization summary
765
766 [[image:1585579349204-697.png]]// Tabmenu// contains the following tools and settings:
767
768 * **Selection of zones checked for punching**
769 You can choose a unique zone or a design group zone member from the drop-down lists to display its detailed results mentioned before. Each row displays the ID and the maximum utilization of a member. In case of a design group, “Maximum” means the significant member having the maximum utilization.
770 * **Selection of design load**
771 Depending on punching design was done for load combinations or load groups, a load combination or the maximum or a significant component of load groups can be selected for detailed results. Each row displays the name of the load combination/load group component and its utilization effect. “Maximum” means the significant load combination or component of load groups.
772 \\[[image:1585579362430-213.png]]
773 Figure: Selection from checked elements and design loads
774
775 * (((
776 [[image:1585579395662-213.png]] **Auto design**
777 Quick //Auto design// can be done for the currently displayed unique/grouped zone. Its design parameters can be set/modified in the appearing dialog, and then clicking //OK// starts punching design that updates all detailed result figures and tables.
778 )))
779 * (((
780 [[image:1585579417694-583.png]] **Display options**
781 The content and the appearance of the detailed result can be set with //Display options//.
782 \\[[image:1585579439372-176.png]]
783 \\Figure: Display options of Detailed result
784 )))
785 * (((
786 [[image:1585579425669-814.png]] **Go to**
787 Navigate in the //Detailed result// window by selecting the required design type in the drop-down list. It is useful when you are in zoomed view.
788 )))
789
790 [[image:1585579464502-590.png]] Click //Tools > Add view to document// to place all figures and tables or specified details only into [[//Documentation//>>doc:Manuals.User Manual.Documentation.WebHome]].
791
792 = {{id name="Concealed bar reinforcement"/}}Concealed bar reinforcement =
793
794 Concealed bar allows for designing certain parts of a shell as a bar. For example, a wall region over a door opening can be considered as a concealed beam. The internal forces from shell results are converted to bar internal forces and the checking is done on the bar.
795
796 To define a concealed bar select the [[image:1585579478922-631.png]] option then  //Specify concealed bar// [[image:1585579483915-763.png]] , then select the RC slab or wall and specify the diagonal corners of a rectangulare region (or select exsisting rectangular region).
797
798 The bar’s local co-ordinate system by default is parallel with the corresponding region’s local system, but there is an option to define skew concealed bar.
799
800 [[image:1585579490462-979.png]]
801
802 |(% style="width:110px" %)[[image:warning.png]]|(% style="width:1340px" %)The concealed bar’s reinforcement is not considered in the shell’s applied reinforcement.
Copyright 2020 StruSoft AB
FEM-Design Wiki