<
From version < 40.1 >
edited by Fredrik Lagerström
on 2020/03/27 11:08
To version < 40.2 >
edited by Fredrik Lagerström
on 2020/03/27 11:08
>
Change comment: (Autosaved)

Summary

Details

Page properties
Content
... ... @@ -2,26 +2,24 @@
2 2  {{toc/}}
3 3  {{/box}}
4 4  
5 -ff
6 -
7 7  Depending on the current FEM-Design module you can do different calculations: displacement, internal forces, stresses, stability, imperfections, stability analysis, eigenfrequencies and/or seismic analysis. Some extra settings such as cracked-section analysis, non-linear behaviour etc. are also available for certain modules.
8 8  
9 9  |Analysis type/settings| | | | |[[image:image-20200327104026-5.png]]|
10 -|[[Analysis for load cases>>path:#_Analysis_for_Load]]|[[image:image-20200327104026-7.png]]| | | |[[image:image-20200327104026-11.png]]|
11 -|[[Analysis for load combinations>>path:#_Analysis_for_Load]]| | |[[image:image-20200327104026-15.png]]|[[image:image-20200327104026-16.png]]| |
12 -|[[Analysis for maximum of  load groups>>path:#_Analysis_for_Maximum]]| |[[image:image-20200327104026-20.png]]| | |[[image:image-20200327104026-23.png]]|
13 -|[[Imperfections>>path:#_Imperfections]]| | | | |[[image:image-20200327104026-26.png]]|
14 -|[[Second order analysis>>path:#_Second_Order_Analysis]]| | | | | |
15 -|[[Stability analysis>>path:#_Stability_Analysis]]| | | |[[image:image-20200327104026-29.png]]| |
16 -|[[Eigenfrequencies>>path:#_Eigenfrequencies]]|[[image:image-20200327104026-31.png]]| | |[[image:image-20200327104026-34.png]]| |
17 -|[[Seismic analysis>>path:#_Seismic_Analysis]]| | | | | |
18 -|[[Non-linear behavior>>path:#_Non-Linear_Behavior]]|[[image:image-20200327104026-38.png]]| | | |[[image:image-20200327104026-42.png]]|
8 +|Analysis for load cases|[[image:image-20200327104026-7.png]]| | | |[[image:image-20200327104026-11.png]]|
9 +|Analysis for load combinations| | |[[image:image-20200327104026-15.png]]|[[image:image-20200327104026-16.png]]| |
10 +|Analysis for maximum of  load groups| |[[image:image-20200327104026-20.png]]| | |[[image:image-20200327104026-23.png]]|
11 +|Imperfections| | | | |[[image:image-20200327104026-26.png]]|
12 +|Second order analysis| | | | | |
13 +|Stability analysis| | | |[[image:image-20200327104026-29.png]]| |
14 +|Eigenfrequencies|[[image:image-20200327104026-31.png]]| | |[[image:image-20200327104026-34.png]]| |
15 +|Seismic analysis| | | | | |
16 +|Non-linear behavior|[[image:image-20200327104026-38.png]]| | | |[[image:image-20200327104026-42.png]]|
19 19  |Cracked-section analysis| | | |[[image:image-20200327104026-47.png]]| |[[image:image-20200327104026-49.png]]
20 20  |Peak**//-smoothing algorithm//**| | |[[image:image-20200327104026-52.png]]| |[[image:image-20200327104026-54.png]]|
21 21  
22 22  Table: Analysis features by FEM-Design Modules
23 23  
24 -Analysis can be done independently from any design calculations by entering to tabmenu and clicking //Calculate// command, or together with [[designs>>path:#_Design]] (RC, Steel or Timber) with the same command.
22 +Analysis can be done independently from any design calculations by entering to tabmenu and clicking //Calculate// command, or together with designs (RC, Steel or Timber) with the same command.
25 25  
26 26  
27 27  
... ... @@ -29,17 +29,17 @@
29 29  
30 30  Figure: Analysis calculations
31 31  
32 -Analysis settings contain general and calculation-dependent settings. This chapter summarizes these settings and their effect on the result. Clicking //OK// runs Analysis according to the settings and selected calculation types. Other chapters introduce the [[display of results>>path:#_Display_Result]] and their [[documentation>>path:#_Documentation]] (such as listing results in tables).
30 +Analysis settings contain general and calculation-dependent settings. This chapter summarizes these settings and their effect on the result. Clicking //OK// runs Analysis according to the settings and selected calculation types. Other chapters introduce the display of results and their documentation (such as listing results in tables).
33 33  
34 34  === General Analysis Settings ===
35 35  
36 36  ==== Finite Element Types ====
37 37  
38 -In the 3D modules, you can choose between “standard” and “accurate” 2D [[element types>>path:#_Element_Types_1]]. With standard elements you can run 4-times faster but less accurate analysis than with the fine elements.
36 +In the 3D modules, you can choose between “standard” and “accurate” 2D element types. With standard elements you can run 4-times faster but less accurate analysis than with the fine elements.
39 39  
40 40  ==== Peak Smoothing ====
41 41  
42 -To solve [[singularity problem>>path:#_Peak_Smoothing]] in analysis results (internal forces), it is not enough to create [[peak smoothing regions>>path:#FEM_peak_smoothing_region_chapter]] in the finite element mesh. The use of the peak smoothing algorithm in the calculations have to be allowed. Without that permission, peak smoothing regions cause only mesh refinements (densifications) around objects.
40 +To solve singularity problem in analysis results (internal forces), it is not enough to create peak smoothing regions in the finite element mesh. The use of the peak smoothing algorithm in the calculations have to be allowed. Without that permission, peak smoothing regions cause only mesh refinements (densifications) around objects.
43 43  
44 44  
45 45  Figure: Peak smoothing algorithm for Analysis
... ... @@ -69,9 +69,9 @@
69 69  
70 70  **Non-Linear Behavior**
71 71  
72 -[[Non-linear behavior>>path:#_Properties_(Non-Linear_Behaviors)]] of supports (e.g. uplift), connections and truss members (e.g. tension-only) can be considered in analysis calculations (for load-combinations, imperfections and stability) by ticking //NL// checkbox at //Calculations > Analysis > Load combinations > Setup load combinations//.
70 +Non-linear behavior of supports (e.g. uplift), connections and truss members (e.g. tension-only) can be considered in analysis calculations (for load-combinations, imperfections and stability) by ticking //NL// checkbox at //Calculations > Analysis > Load combinations > Setup load combinations//.
73 73  
74 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.wmz||alt="MCj02990090000%5b1%5d"]] **“[[Uplift>>path:#Uplift_example]]” can be modeled both in 2D and 3D design modules by defining compression-only //support/connection// (tension = 0 (free)) and by selecting non-linear calculation for a load combination.
72 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.wmz||alt="MCj02990090000%5b1%5d"]] **“Uplift” can be modeled both in 2D and 3D design modules by defining compression-only //support/connection// (tension = 0 (free)) and by selecting non-linear calculation for a load combination.
75 75  
76 76  There is a possibility for the user to set the maximum iteration number of nonlinear calculation in //Non-linear calculations //tab in// Setup load combination calculation// dialog.
77 77  
... ... @@ -119,7 +119,7 @@
119 119  
120 120  To allow the 2^^nd^^ order analysis for load combinations, just tick the //2ND// checkbox at //Calculations > Analysis > Load combinations > Setup load combinations// //>// //By load combinations//
121 121  
122 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.wmz||alt="MCj02990090000%5b1%5d"]] **The 2^^nd^^ order analysis is recommended to be done together with [[imperfection>>path:#_Imperfections]] calculation. In //Setup load combinations// dialog, choose load combinations which you would like to apply the 2^^nd^^ order theory for, and give the number of imperfection shape (simultaneous or previous calculation for imperfection is needed) you would like to consider for the 2^^nd^^ order analysis.
120 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.wmz||alt="MCj02990090000%5b1%5d"]] **The 2^^nd^^ order analysis is recommended to be done together with imperfection calculation. In //Setup load combinations// dialog, choose load combinations which you would like to apply the 2^^nd^^ order theory for, and give the number of imperfection shape (simultaneous or previous calculation for imperfection is needed) you would like to consider for the 2^^nd^^ order analysis.
123 123  
124 124  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
125 125  
... ... @@ -178,7 +178,7 @@
178 178  
179 179  ==== Displacements ====
180 180  
181 -Depending on the current FEM-Design module, the program calculates and displays the model displacement from linear or non-linear (for RC elements: [[(% class="wikiinternallink" %)**cracked-section analysis**>>path:#_Cracked-Section_Analysis]](%%)) analysis. There are two types of displacement results: translational or rotational. For bar elements, the motion and rotation components can be displayed separately ([[(% class="wikiinternallink" %)**Detailed result**>>path:#_Detailed_Bar_Result]](%%)) by direction ([[(% class="wikiinternallink" %)**local axis**>>path:#_Co-ordinate_Systems]](%%)).
179 +Depending on the current FEM-Design module, the program calculates and displays the model displacement from linear or non-linear (for RC elements: (% class="wikiinternallink" %)**cracked-section analysis**(%%)) analysis. There are two types of displacement results: translational or rotational. For bar elements, the motion and rotation components can be displayed separately ((% class="wikiinternallink" %)**Detailed result**(%%)) by direction ((% class="wikiinternallink" %)**local axis**(%%)).
182 182  
183 183  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **In [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate//, the displacements are calculated for the plate regions and beam elements, and the motion is parallel with the global Z direction, so perpendicular to the plate regions. Only reactions can be asked for columns (point reaction) and walls (line reaction).
184 184  
... ... @@ -186,21 +186,21 @@
186 186  
187 187  In [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png||alt="icon_PREDESIGNMODULE"]] //PreDesign//, although the 3D model contains all types of elements, displacements are calculated for the vertical elements such as columns and walls.
188 188  
189 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Displacement results are recommended to be asked for [[(% class="wikiinternallink" %)**serviceability load combinations**.>>path:#_Load_Combination]]
187 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Displacement results are recommended to be asked for (% class="wikiinternallink" %)**serviceability load combinations**.
190 190  
191 191  ==== Reactions ====
192 192  
193 -Depending on the support types, the program calculates the reaction forces and/or moments in the [[(% class="wikiinternallink" %)**supports**>>path:#_Supports]](%%) by direction component, their resultants and the resultant at the support’s center of gravity of line and surface supports.
191 +Depending on the support types, the program calculates the reaction forces and/or moments in the (% class="wikiinternallink" %)**supports**(%%) by direction component, their resultants and the resultant at the support’s center of gravity of line and surface supports.
194 194  
195 195  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates reactions in columns and walls too above the point/line and surface supports.
196 196  
197 197  The available result components:
198 198  
199 -// Fx’ /// //Fy’ /// //Fz’//                                            - reaction force in the local x’/y’/z’ axis of the support ([[(% class="wikiinternallink" %)**group**>>path:#support_group_chapter]](%%));
197 +// Fx’ /// //Fy’ /// //Fz’//                                            - reaction force in the local x’/y’/z’ axis of the support ((% class="wikiinternallink" %)**group**(%%));
200 200  
201 201  // Fr//                                                                                                                             - resultant of the reaction force components (//support group//);
202 202  
203 -// F//                                                                                                                                                            - reaction force of the [[(% class="wikiinternallink" %)**single support**>>path:#support_group_chapter]](%%);
201 +// F//                                                                                                                                                            - reaction force of the (% class="wikiinternallink" %)**single support**(%%);
204 204  
205 205  // Mx’ /// //My’ / Mz’//          - reaction moment around the local x’/y’/z’ axis of the support (//group//);
206 206  
... ... @@ -210,7 +210,7 @@
210 210  
211 211  ==== Connection Forces ====
212 212  
213 -Similarly to reactions, the program calculates the forces and/or moments in the connection objects ([[(% class="wikiinternallink" %)**Edge connection**>>path:#plate_edge_connection]](%%), [[(% class="wikiinternallink" %)**Point-point connection**>>path:#point_point_connection_chapter]](%%) and/or [[(% class="wikiinternallink" %)**Line-line connection**>>path:#line_line_connection_chapter]](%%)) by direction component and their resultants.
211 +Similarly to reactions, the program calculates the forces and/or moments in the connection objects ((% class="wikiinternallink" %)**Edge connection**(%%), (% class="wikiinternallink" %)**Point-point connection**(%%) and/or (% class="wikiinternallink" %)**Line-line connection**(%%)) by direction component and their resultants.
214 214  
215 215  The available result components:
216 216  
... ... @@ -321,7 +321,7 @@
321 321  
322 322  // My’ / Mz’//                                                                                - bending moment around the local y’/z’ axis of the bar element.
323 323  
324 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **[[(% class="wikiinternallink" %)**Truss members**>>path:#_Truss_Member]](%%) bear only normal forces (N).
322 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] (% class="wikiinternallink" %)Truss members(%%)** bear only normal forces (N).
325 325  
326 326   The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates internal forces only for beams. Columns are point supports.
327 327  
... ... @@ -333,7 +333,7 @@
333 333  
334 334  Depending on the current FEM-Design module, the program calculates internal forces and/or moments in the planar structural elements
335 335  
336 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates internal forces in the [[(% class="wikiinternallink" %)**plate**>>path:#_Plate]](%%) regions and in the [[(% class="wikiinternallink" %)**Global coordinate system**>>path:#_Co-ordinate_Systems]](%%):
334 +The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates internal forces in the (% class="wikiinternallink" %)**plate**(%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%):
337 337  
338 338  //M**x’**/ M**y’**//                - bending moment around the **global** **Y / X axis**;
339 339  
... ... @@ -345,9 +345,9 @@
345 345  
346 346  //M1/M2//                     - principal moment directions.
347 347  
348 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Although //Analysis// calculations give results for the **global Descartes system**, internal forces can be asked and displayed in arbitrary (reinforcement) directions by checking [[(% class="wikiinternallink" %)**design forces**>>path:#_Auto_Design]](%%) in case of [[(% class="wikiinternallink" %)**RC design**.>>path:#_RC_Design]]
346 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Although //Analysis// calculations give results for the **global Descartes system**, internal forces can be asked and displayed in arbitrary (reinforcement) directions by checking (% class="wikiinternallink" %)**design forces**(%%) in case of (% class="wikiinternallink" %)**RC design**.
349 349  
350 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png||alt="icon_WALLMODULE"]] //Wall// module calculates internal forces in the [[(% class="wikiinternallink" %)**wall**>>path:#_Wall]](%%) regions and in the [[(% class="wikiinternallink" %)**Global coordinate system**>>path:#_Co-ordinate_Systems]](%%):
348 +The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png||alt="icon_WALLMODULE"]] //Wall// module calculates internal forces in the (% class="wikiinternallink" %)**wall**(%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%):
351 351  
352 352  //Nx’ /// //Ny’//               - normal force in the global X / Y direction;
353 353  
... ... @@ -357,7 +357,7 @@
357 357  
358 358  //N1/N2//                     - principal normal directions.
359 359  
360 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png||alt="icon_PLANESTRAIN"]] //Plane Strain// module calculates only the [[(% class="wikiinternallink" %)**shear stresses**>>path:#analysis_shell_stress]](%%) in the [[(% class="wikiinternallink" %)**wall**>>path:#_Wall]](%%) regions and in the [[(% class="wikiinternallink" %)**Global coordinate system**>>path:#_Co-ordinate_Systems]](%%).
358 +The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png||alt="icon_PLANESTRAIN"]] //Plane Strain// module calculates only the (% class="wikiinternallink" %)**shear stresses**(%%) in the (% class="wikiinternallink" %)**wall**(%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%).
361 361  
362 362  The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png||alt="icon_3DSTRU"]] //3D Structure// module calculates internal forces and moments in the planar object regions (plate and wall) in their local coordinate system:
363 363  
... ... @@ -395,7 +395,7 @@
395 395  
396 396  ==== Shell Stresses ====
397 397  
398 -The program calculates stresses in the top, bottom and middle (so called “membrane”) planes of the planar elements. The meaning of top and bottom side depends on the position ([[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module) or the [[(% class="wikiinternallink" %)**local coordinate system**>>path:#_Co-ordinate_Systems]](%%) (3D modules) of a region element.
396 +The program calculates stresses in the top, bottom and middle (so called “membrane”) planes of the planar elements. The meaning of top and bottom side depends on the position ([[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module) or the (% class="wikiinternallink" %)**local coordinate system**(%%) (3D modules) of a region element.
399 399  
400 400  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png||alt="anal_membrane.png"]]
401 401  
... ... @@ -423,11 +423,11 @@
423 423  
424 424  In [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png||alt="icon_WALLMODULE"]] //Wall// and [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png||alt="icon_PLANESTRAIN"]] //Plane Strain//, stresses are calculated only in the membrane plane.
425 425  
426 -==== Equilibrium Check ====
424 +== Equilibrium Check ==
427 427  
428 -The program automatically checks the equilibrium of the analysis calculations. Statical equation is written to the origin [0; 0; 0] of the [[(% class="wikiinternallink" %)**Global Coordinate System**>>path:#_Co-ordinate_Systems]](%%). It compares the sum of the reactions and the sum of applied loads. Equilibriums can be asked by load case and load combination.
426 +The program automatically checks the equilibrium of the analysis calculations. Statical equation is written to the origin [0; 0; 0] of the (% class="wikiinternallink" %)**Global Coordinate System**(%%). It compares the sum of the reactions and the sum of applied loads. Equilibriums can be asked by load case and load combination.
429 429  
430 -Just click the [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png||alt="icon_equilibriumcheck.png"]] //Equilibrium// icon (in Analysis or [[(% class="wikiinternallink" %)**Design**>>path:#_Design]](%%) mode), choose a load case or load combination to see the equilibrium check results.
428 +Just click the [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png||alt="icon_equilibriumcheck.png"]] //Equilibrium// icon (in Analysis or (% class="wikiinternallink" %)**Design**(%%) mode), choose a load case or load combination to see the equilibrium check results.
431 431  
432 432  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
433 433  
... ... @@ -438,13 +438,13 @@
438 438  
439 439  If equilibrium error derives from an analysis calculation, the error will be appeared in percentage in the Error column by equation types (force (F) and moment (M)) and directions (x, y and z directions of the global coordinate system). “Error” shows the differences between the resultants of the queried loads and the calculated reactions.
440 440  
441 -=== Analysis for Maximum of Load Combinations and Groups ===
439 += Analysis for Maximum of Load Combinations and Groups =
442 442  
443 443  Choosing //Load combinations// for Analysis automatically generates results for the maximum of load combinations too.
444 444  
445 -If you define [[(% class="wikiinternallink" %)**Load groups**>>path:#_Load_Group]](%%) and choose //Maximum of load groups// for Analysis, FEM-Design calculates maximum/minimum results (in all finite element nodes) from the most unfavorable combinations of the load groups according to the applied code.
443 +If you define (% class="wikiinternallink" %)**Load groups**(%%) and choose //Maximum of load groups// for Analysis, FEM-Design calculates maximum/minimum results (in all finite element nodes) from the most unfavorable combinations of the load groups according to the applied code.
446 446  
447 -So, maximum and simultaneous results of [[(% class="wikiinternallink" %)**displacements**>>path:#_Displacements]](%%), [[(% class="wikiinternallink" %)**reactions**>>path:#_Reactions]](%%), [[(% class="wikiinternallink" %)**connection forces**>>path:#_Connection_Forces]](%%), internal forces ([[(% class="wikiinternallink" %)**bar**>>path:#_Bar_Internal_Forces]](%%) and/or [[(% class="wikiinternallink" %)**shell**>>path:#_Shell_Internal_Forces]](%%)) and stresses ([[(% class="wikiinternallink" %)**bar**>>path:#_Bar_Stresses]](%%) and/or [[(% class="wikiinternallink" %)**shell**>>path:#_Shell_Stresses]](%%)) can be calculated for maximum of load combinations and groups.
445 +So, maximum and simultaneous results of (% class="wikiinternallink" %)**displacements**(%%), (% class="wikiinternallink" %)**reactions**(%%), (% class="wikiinternallink" %)**connection forces**(%%), internal forces ((% class="wikiinternallink" %)**bar**(%%) and/or (% class="wikiinternallink" %)**shell**(%%)) and stresses ((% class="wikiinternallink" %)**bar**(%%) and/or (% class="wikiinternallink" %)**shell**(%%)) can be calculated for maximum of load combinations and groups.
448 448  
449 449  The symbol “+” and “–“ sign the direction of the maximal value in the valid systems: local or global coordinate systems (depend on the current FEM-Design module). Some examples for the meaning of “+” and “-“:
450 450  
... ... @@ -508,7 +508,6 @@
508 508  
509 509  |[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image016.wmz||alt="MCj04113200000%5b1%5d"]]|For columns only this (//“Cantilever and column”//) option is available.|
510 510  
511 -
512 512  |(((
513 513  **Deflection lengths**
514 514  )))
... ... @@ -558,7 +558,7 @@
558 558  
559 559  * **Imperfection calculation according to the formula EC3: 1-1 (automatic)**
560 560  
561 -For load combinations, the program can calculates the probable imperfect shapes in real dimensions from the mode shapes (get from [[(% class="wikiinternallink" %)**stability analysis**>>path:#_Stability_Analysis]](%%)) according to Eurocode. [[(% class="wikiinternallink" %)**Second order analysis**>>path:#_Second_Order_Analysis]](%%) must be run by using imperfection. To do automatic imperfection calculations, activate //Imperfections// and set the required number of the imperfect shapes (//Rqd.// cell) for the load combination which you would like to run imperfection for.
558 +For load combinations, the program can calculates the probable imperfect shapes in real dimensions from the mode shapes (get from (% class="wikiinternallink" %)**stability analysis**(%%)) according to Eurocode. (% class="wikiinternallink" %)**Second order analysis**(%%) must be run by using imperfection. To do automatic imperfection calculations, activate //Imperfections// and set the required number of the imperfect shapes (//Rqd.// cell) for the load combination which you would like to run imperfection for.
562 562  
563 563  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png||alt="anal_imp1.png"]]
564 564  
... ... @@ -586,7 +586,7 @@
586 586  
587 587  === Stability Analysis ===
588 588  
589 -In 3D modules, global stability of the structure can be analyzed automatically if it is requested. Similarly to [[(% class="wikiinternallink" %)**Imperfections**>>path:#_Imperfections]](%%), the program calculates buckling shapes together with their critical parameters for selected load combinations.
586 +In 3D modules, global stability of the structure can be analyzed automatically if it is requested. Similarly to (% class="wikiinternallink" %)**Imperfections**(%%), the program calculates buckling shapes together with their critical parameters for selected load combinations.
590 590  
591 591  To do stability analysis, activate //Stability analysis// and set the required number of the buckling shapes (//Rqd.// cell) for the load combination which you would ask stability results for.
592 592  
... ... @@ -644,7 +644,7 @@
644 644  
645 645  |[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]]|Higher probability values shows high probability that the shape is global. If there are not enough shapes calculated, none might be global.|
646 646  
647 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Before stability analysis, it is recommended to set minimum 4-5 [[(% class="wikiinternallink" %)**division numbers**>>path:#FEM_division_number_chapter]](%%) (finite elements) for bars.
644 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Before stability analysis, it is recommended to set minimum 4-5 (% class="wikiinternallink" %)**division numbers**(%%) (finite elements) for bars.
648 648  
649 649  === Eigenfrequencies ===
650 650  
... ... @@ -662,9 +662,9 @@
662 662  
663 663  Figure: Dynamic calculation
664 664  
665 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **Dynamic calculation requires [[(% class="wikiinternallink" %)**masses**>>path:#_Mass]](%%) to be predefined.
662 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **Dynamic calculation requires (% class="wikiinternallink" %)**masses**(%%) to be predefined.
666 666  
667 -[[(% class="wikiinternallink" %)**Seismic analysis**>>path:#_Seismic_Analysis]](%%) needs the eigenfrequencies calculations.
664 +[[(% class="wikiinternallink wikiinternallink" %)**Seismic analysis**>>path:#_Seismic_Analysis]](%%) needs the eigenfrequencies calculations.
668 668  
669 669  In Calculation / Eigenfrequencies dialog the user can set the level of top of the substructure. The masses will be neglected __at__ and __under__ this level.
670 670  
... ... @@ -679,7 +679,7 @@
679 679  
680 680  Results of Eigienfrequencies calculation:
681 681  
682 -//Masses//                   - mass matrix of [[(% class="wikiinternallink" %)**point masses**>>path:#_Mass]](%%) and/or [[(% class="wikiinternallink" %)**masses calculated from load cases**>>path:#load_loadcase_mass_conversion]](%%) converted into finite element nodes;
679 +//Masses//                   - mass matrix of (% class="wikiinternallink" %)**point masses**(%%) and/or (% class="wikiinternallink" %)**masses calculated from load cases**(%%) converted into finite element nodes;
683 683  
684 684  //Vibration shape//   - vibration shape and associated eigeinfrequency (//Frequency//) and periodic time (//Period//).
685 685  
... ... @@ -686,7 +686,7 @@
686 686  
687 687  Figure: Results of dynamic calculations
688 688  
689 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Before dynamic analysis, it is recommended to set minimum 4-5 [[(% class="wikiinternallink" %)**division numbers**>>path:#FEM_division_number_chapter]](%%) (finite elements) for bars.
686 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Before dynamic analysis, it is recommended to set minimum 4-5 (% class="wikiinternallink" %)**division numbers**(%%) (finite elements) for bars.
690 690  
691 691  ==== Shear center result ====
692 692  
... ... @@ -698,7 +698,6 @@
698 698  
699 699  |[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]]|Each displayed shear center represents the result of a calculation based on the storeys below that storey. For example, the calculation of the center displayed on “Storey 2” takes also “Storey 1” and “Foundation” into account.
700 700  
701 -
702 702  |(((
703 703  Values in the Tooltip:
704 704  
... ... @@ -707,7 +707,6 @@
707 707  * __x, y, z__: the global coordinates of the shear center.
708 708  )))
709 709  
710 -
711 711  Shear center results can be listed in //List tables dialog/Analysis/Eigenfrequencies/Shear center.//
712 712  
713 713  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
... ... @@ -715,142 +715,117 @@
715 715  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
716 716  
717 717  
718 -=== Seismic Analysis ===
713 += Seismic Analysis =
719 719  
720 -==== Methods ====
715 +== Methods ==
721 721  
722 -In the [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png||alt="icon_FRAMEMODULE"]] and [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png||alt="icon_3DSTRU"]] modules, seismic calculation offers the following methods to the users according to Eurocode 8.
717 +In the [[image:1585302865594-127.png]] and [[image:1585302871135-454.png]] modules, seismic calculation offers the following methods to the users according to Eurocode 8.
723 723  
724 724  * **Modal response spectrum analysis (“Modal analysis”)**
725 725  * **Lateral force method / Equivalent static load method**
726 -
727 727  This method can be used to calculate the seismic effect in horizontal plan, x’ and/or y’ direction. The main point is to calculate “base shear force” taking into account the base vibration period and design spectrum in x’ or y’ direction, which is distributed into those nodes of the structure where there are nodal masses. The “base shear force” formula is taken from //EC-8 4.3.3.2.2(1)P//. The “base shear force” is nothing else than the total seismic force of inertia that acts between the ground and the structure, and it can be distributed in two ways:
728 -
729 -*
730 730  ** **Linear shape method (Static, linear shape)**
731 -
732 732  The distribution of the “base shear force” happens according to a simplified fundamental mode shape, which is approximated by horizontal displacements that increased linearly along the height.
733 -
734 -*
735 735  ** **Mode shape method (Static, mode shape)**
736 736  
737 737  See the detailed description and the applied theory of all calculation methods in the //Theory book//. This guide introduces only the user interface and the steps of seismic analysis.
738 738  
739 -==== Steps of Seismic Calculation ====
728 +== Steps of Seismic Calculation ==
740 740  
741 741  The suggested steps of seismic calculation are the followings:
742 742  
743 743  1. **Mass definition**
744 -
745 -To calculate the seismic effect, it is necessary to know the vibration shapes and corresponding periods (except the //Static, linear shape// method). To perform dynamic calculations, it is necessary to define mass distribution which can be defined as [[(% class="wikiinternallink" %)**concentrated mass**>>path:#_Mass]](%%) or [[(% class="wikiinternallink" %)**load case-mass conversion**>>path:#load_loadcase_mass_conversion]](%%).
746 -
733 +To calculate the seismic effect, it is necessary to know the vibration shapes and corresponding periods (except the //Static, linear shape// method). To perform dynamic calculations, it is necessary to define mass distribution which can be defined as (% class="wikiinternallink" %)**concentrated mass**(%%) or (% class="wikiinternallink" %)**load case-mass conversion**(%%).
747 747  1. **Design spectrum definition**
748 -
749 -|(((
750 -
751 -)))
752 -
753 -The program contains predefined [[(% class="wikiinternallink" %)**design spectra**>>path:#load_design_spectra]](%%) according to //EC8//, but you can also define your own spectra. Use the command [[(% class="wikiinternallink" %)**Seismic load**>>path:#_Seismic_Load]](%%) (//Loads// menu).
754 -
755 -
735 +The program contains predefined (% class="wikiinternallink" %)**design spectra**(%%) according to //EC8//, but you can also define your own spectra. Use the command (% class="wikiinternallink" %)**Seismic load**(%%) (//Loads// menu).
756 756  1. **Dynamic calculation**
757 -
758 -[[(% class="wikiinternallink" %)**Dynamic calculation**>>path:#_Eigenfrequencies]](%%) should be done before performing seismic calculation, which gives sufficient vibration shapes of the structure. Although setup for the seismic calculation can be done at any time, but the seismic calculation could be performed only after //Eigenfrequency// calculation. Run dynamic calculation under //Analysis// by setting the required number of vibration shapes.
759 -
760 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **It is suggested to set the finite element number bigger than 1 at bars (//Finite elements/ //[[(% class="wikiinternallink" %)**Division number**>>path:#FEM_division_number_chapter]](%%)).
761 -
762 -1. **Settings of seismic calculation**
763 -
737 +(% class="wikiinternallink" %)**Dynamic calculation**(%%) should be done before performing seismic calculation, which gives sufficient vibration shapes of the structure. Although setup for the seismic calculation can be done at any time, but the seismic calculation could be performed only after //Eigenfrequency// calculation. Run dynamic calculation under //Analysis// by setting the required number of vibration shapes.(((
738 +|(% style="width:95px" %)[[image:light.png]]|(% style="width:1355px" %)It is suggested to set the finite element number bigger than 1 at bars (//Finite elements/ //(% class="wikiinternallink" %)**Division number**(%%)).
739 +)))
740 +1. (((
741 +**Settings of seismic calculation**
764 764  A national code always provides which seismic calculation method has to be performed for different structure, where and when it should be performed and what other effects to be considered (e.g. torsional effect, P-∆ effect). //FEM-Design //provides three types of calculation methods (depending on the applied code):
765 -
766 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png||alt="se_88_seismic%20methods"]]
767 -
743 +[[image:1585303002015-960.png]]
768 768  Figure: Settings of seismic analysis
745 +)))
769 769  
770 770  * **Static, linear shape**
748 +As a matter of fact, eigenfrequency calculation is not necessary for this method, because giving the base period time in //x’// and //y’// directions (//Tx’// and //Ty’//) is enough for the calculation. Practically, eigenfrequency calculation performs before setting this data, but these data can be defined using experimental formulas as well. Investigation can be done in //x’// or //y’// direction, or both together.(((
749 +(% style="width:700px" %)
750 +|(% style="width:225px" %)(((
751 +[[image:1585303078921-407.png]]
752 +)))|(% style="width:472px" %)You may set the calculation direction to be performed by selecting the desired direction. To set the desired //x’-y’// direction, you should give //Alfa// (alfa is the angle between the global //X// and //x’//; see (% class="wikiinternallink" %)**Direction of the horizontal effect**(%%)).  =0.0 means //x’-y’// directions coincide with global //X-Y// directions.
771 771  
772 -As a matter of fact, eigenfrequency calculation is not necessary for this method, because giving the base period time in //x’// and //y’// directions (//Tx’// and //Ty’//) is enough for the calculation. Practically, eigenfrequency calculation performs before setting this data, but these data can be defined using experimental formulas as well. Investigation can be done in //x’// or //y’// direction, or both together.
773 -
774 -
775 -|(((
776 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png||alt="se_89_seismic_linear"]]
754 +|(% style="width:107px" %)[[image:warning.png]]|(% style="width:1383px" %)This method is unusable, if the whole foundation is not in same plane or the horizontal foundation is elastic. In these cases, //Static, mode shape// or //Modal analysis// should be used.
777 777  )))
778 -
779 -You may set the calculation direction to be performed by selecting the desired direction. To set the desired //x’-y’// direction, you should give //Alfa// ( is the angle between the global //X// and //x’//; see [[(% class="wikiinternallink" %)**Direction of the horizontal effect**>>path:#direction_of_the_horizontal_effect]](%%)).  =0.0 means //x’-y’// directions coincide with global //X-Y// directions.
780 -
781 -
782 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **This method is unusable, if the whole foundation is not in same plane or the horizontal foundation is elastic. In these cases, //Static, mode shape// or //Modal analysis// should be used.
783 -
784 784  * **Static, mode shape**
757 +In this method the distribution of “base shear force” happens according to fundamental mode shapes (base vibration shapes).(((
758 +(% style="width:826px" %)
759 +|(% style="width:258px" %)(((
760 +[[image:1585303183304-641.png]]
761 +)))|(% style="width:565px" %)The table shows how to select the base vibration shapes. It contains all mode shapes (//No//), the vibration time (//T(s)//) and effective masses of the mode shapes in //x’// and //y’// directions (//mx’~(%)// and //my’~(%)//). The effective masses are given in a relative form to the total or reduced mass of the structure. The reduced mass means the total mass above the foundation or above the rigid basement. The value of the effective mass refers to how the mode shape responds to a ground motion direction, so the effective mass shows the participation weight of the mode shape.
785 785  
786 -In this method the distribution of “base shear force” happens according to fundamental mode shapes (base vibration shapes).
787 -
788 -
789 -|(((
790 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png||alt="se_edit_90_seismic%20mode"]]
791 -)))
792 -
793 -The table shows how to select the base vibration shapes. It contains all mode shapes (//No//), the vibration time (//T(s)//) and effective masses of the mode shapes in //x’// and //y’// directions (//mx’~(%)// and //my’~(%)//). The effective masses are given in a relative form to the total or reduced mass of the structure. The reduced mass means the total mass above the foundation or above the rigid basement. The value of the effective mass refers to how the mode shape responds to a ground motion direction, so the effective mass shows the participation weight of the mode shape.
794 -
795 -
796 796  //Select// (or double-click on it) one mode shape in //x'// or/and //y'// direction(s) (//mx’ /my’//). (Yellow field color shows the activation.)
764 +
797 797  
798 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **It is recommended to select that mode shape which gives the largest effective mass as the fundamental mode shape.
766 +|(% style="width:95px" %)[[image:light.png]]|(% style="width:1355px" %)It is recommended to select that mode shape which gives the largest effective mass as the fundamental mode shape.
799 799  
800 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **The calculation of “base shear force” is performed according to the total mass of the structure and not to the effective mass.
801 -
768 +|(% style="width:107px" %)[[image:warning.png]]|(% style="width:1383px" %)The calculation of “base shear force” is performed according to the total mass of the structure and not to the effective mass.
769 +)))
802 802  * **Modal analysis**
771 +\\[[image:1585303301268-646.png]]
772 +\\The essence of the methodis the calculation of the structural response for different ground motions by the sufficient summation of more vibration shapes. Method gives possibility to take into account full //x'//, //y'// and //z// (=global //Z//) direction investigation.
773 +\\In the table, more vibration mode shape could be selected in //x’//, //y’// and //z //directions if necessary. The last row (orange cells) of the table shows that how large is the sum of the considered effective masses compared to the total or reduced mass of the structure in a given ground motion direction.
774 + (((
775 +(% style="width:823px" %)
776 +|(% style="width:95px" %)[[image:light.png]]|(% style="width:725px" %)According to //EC8//, sum of the effective mass of the choosen mode shapes (at least in horizontal direction) should reach 90% of total mass. Additionally every mode shape has to be taken into account where effective mass is larger than 5%.
803 803  
804 -The essence of the method is the calculation of the structural response for different ground motions by the sufficient summation of more vibration shapes. Method gives possibility to take into account full //x'//, //y'// and //z// (=global //Z//) direction investigation.
778 +|(% style="width:95px" %)[[image:light.png]]|(% style="width:1355px" %)(((
779 +If the sum of the effective mass is much smaller than 90%, eigenfrequency calculation should be done for more shapes in order to reach 90%.
805 805  
806 -In the table, more vibration mode shape could be selected in //x’//, //y’// and //z //directions if necessary. The last row (orange cells) of the table shows that how large is the sum of the considered effective masses compared to the total or reduced mass of the structure in a given ground motion direction.
807 -
808 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **According to //EC8//, sum of the effective mass of the choosen mode shapes (at least in horizontal direction) should reach 90% of total mass. Additionally every mode shape has to be taken into account where effective mass is larger than 5%.
809 -
810 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **If the sum of the effective mass is much smaller than 90%, eigenfrequency calculation should be done for more shapes in order to reach 90%.
811 -
812 812  Lots of mode shapes should be ensured to reach the 90% of total mass in vertical direction. It is highly recommended to check the national code, whether it is necessary to examine the vertical effect or it is not.
813 813  
814 814  The mode shapes which have small effective mass may be neglected, because their effect in result is very small, but calculation time increases.
784 +)))
785 +)))
815 815  
787 +=== **Summation rule by directions** ===
816 816  
817 -
818 -**Summation rule by directions**
819 -
820 820  According to the //EC8//, the summation rule in the individual directions can be selected. In all other codes always the //SRSS// rule is used for summation (there is no choice). Read more about //SRSS// and //CQC// summation rules in //Theory book//. If the //Automatic// is selected, the rule selection procedure is as follow:
821 821  
822 -
791 +(% style="width:843px" %)
823 823  |(((
824 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png||alt="se_92_seismic%20summa"]]
825 -)))
826 -
793 +[[image:1585303517214-464.png]]
794 +)))|(% style="width:556px" %)(((
827 827  -     Always three directions are investigated (if more than one mode shape is selected in a column), where all mode shape is independent from each other or not.
828 828  
829 829  
830 830  -     If at least one dependent situation exists in a direction, the program automatically uses the //CQC// rule for all mode shape in that direction, otherwise //SRSS// rule is used.
799 +)))
831 831  
832 -**Direction of the horizontal effect**
801 +=== **Direction of the horizontal effect** ===
833 833  
834 834  Codes generally speak about seismic calculation in //X-Y// directions. These directions give the maximum effect, if the mass and elastic properties of the structure ensure that the calculated mode shapes lay in //X-Z// or //Y-Z// plane. But it is not always achieved in practice.
835 835  
836 836  To achieve the unfavorable direction, where the results of ground motion are maximum, the program gives the possibility to set //x'//-//y'// direction for the seismic horizontal effect (//Alpha//). The program suggests the //Alfa// value, if you click on //Auto// button. It finds the most unfavorable direction, where any of the //mx’// and //my’// is zero and the other is maximum in the same row (same shape). But, there is a rule: the direction can be ensured only for one mode shape, so the program selects the row where the effective mass is the maximum. If manually definition is chosen, give an angle for //Alfa// and press the button //Set//.
837 837  
838 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="egerpad%20copy"]] On the left hand side figure you can see a badly adjusted //x’-y’// direction (//Alpha = 0//). Appling //Auto// button, the program arranges the direction for the 58.5% effective mass //my’// and correct it to 78%.
807 +|[[image:1585303554467-548.png]]|(((
808 +On the left hand side figure you can see a badly adjusted //x’-y’// direction (//Alpha = 0//). Appling //Auto// button, the program arranges the direction for the 58.5% effective mass //my’// and correct it to 78%.
839 839  
840 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png||alt="se_93_seismic%20alfa"]]
810 +[[image:1585303575071-493.png]]
841 841  
842 842  Figure: Settings of Alpha
813 +)))
843 843  
844 -**Effective mass**
815 +=== **Effective mass** ===
845 845  
846 846  The modal effective masses can be compared to the total mass or reduced mass at //Eff. mass//:
847 847  
819 +|(% style="width:128px" %)(((
820 +[[image:1585303685867-313.png]]
821 +)))|(% style="width:1362px" %)In //FEM-Design// “//Reduced mass//” means the difference between the total mass of the structure and the basement mass. The basement mass is the sum of all masses which lay on the foundation level (set at //Seismic load/ Others//).
848 848  
849 -|(((
850 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png||alt="se_94_seismic%20effectivemass"]]
851 -)))
852 852  
853 -
854 854  In //FEM-Design// “//Reduced mass//” means the difference between the total mass of the structure and the basement mass. The basement mass is the sum of all masses which lay on the foundation level (set at //Seismic load/ Others//).
855 855  
856 856  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image006.wmz||alt="MCj04113200000%5b1%5d"]] **//EC8// defines the total mass without basement (//Reduced mass//). The effective masses are generally compared to the //Reduced mass//, but this is not valid for the massive basement with elastic foundation. If the above mentioned situation is the case, it might happen that the sum of the effective masses of a column is larger than the 100%.
... ... @@ -864,9 +864,8 @@
864 864  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png||alt="se_95_seismic%20options"]]
865 865  )))
866 866  
837 +=== **Combination rule** ===
867 867  
868 -**Combination rule**
869 -
870 870  The combination rule of effects in the //x'//, //y'// and maybe //z// directions can be set here. You can choose from two possibilities.
871 871  
872 872  **Consider torsional effect / Consider second order effect**
... ... @@ -873,44 +873,51 @@
873 873  
874 874  Additional effects can be taken into consideration during seismic calculation. See the detailed description of these effects in //Theory book//.
875 875  
876 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image006.wmz||alt="MCj04113200000%5b1%5d"]] **The calculation of both effects needs the definition of [[(% class="wikiinternallink" %)**storeys**>>path:#_Storey]](%%).
845 +|(% style="width:107px" %)[[image:warning.png]]|(% style="width:1383px" %)The calculation of both effects needs the definition of (% class="wikiinternallink" %)**storeys**(%%).
877 877  
847 +**~ **
848 +
878 878  1. **Seismic calculation**
879 879  
880 880  After choosing a calculation method and setting its properties, activate first //Seismic analysis// under //Analysis// and then press //OK//.
881 881  
882 -==== The Results ====
853 +== The Results ==
883 883  
884 -Besides [[(% class="wikiinternallink" %)**displacements**>>path:#_Displacements]](%%), [[(% class="wikiinternallink" %)**reactions**>>path:#_Reactions]](%%), [[(% class="wikiinternallink" %)**connection forces**>>path:#_Connection_Forces]](%%) and [[(% class="wikiinternallink" %)**internal forces**>>path:#_Bar_Internal_Forces]](%%), the program calculates the //Equivalent loads// and the “//Base shear force//”. Results can be displayed by vibration shape (selected at calculation settings), from torsional effect, from sums by direction and from the total sum (//Seismic max//). If equivalent loads are displayed, also the “base shear force” appears on screen (in grey color). Torsional moment effect on the whole structure can also be displayed, if torsional effect was taken into consideration during calculation.
855 +Besides (% class="wikiinternallink" %)**displacements**(%%), (% class="wikiinternallink" %)**reactions**(%%), (% class="wikiinternallink" %)**connection forces**(%%) and (% class="wikiinternallink" %)**internal forces**(%%), the program calculates the //Equivalent loads// and the “//Base shear force//”. Results can be displayed by vibration shape (selected at calculation settings), from torsional effect, from sums by direction and from the total sum (//Seismic max//). If equivalent loads are displayed, also the “base shear force” appears on screen (in grey color). Torsional moment effect on the whole structure can also be displayed, if torsional effect was taken into consideration during calculation.
885 885  
886 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png||alt="se_96_seismic%20results"]]
857 +(% style="text-align:center" %)
858 +[[image:1585302782102-375.png]]
887 887  
860 +(% style="text-align: center;" %)
888 888  Figure: Results of Seismic analysis
889 889  
890 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image006.wmz||alt="MCj04113200000%5b1%5d"]] **Because of the square combination rule, the results summed by direction (//Sum, x’//, //Sum, y’//, //Sum, z//) and the total sum (//Seismic max//) give only positive values, so absolute maximums. Also, because of combination rule, the displacement components and the internal forces in one point are not simultaneous results.
863 +|(% style="width:107px" %)[[image:warning.png]]|(% style="width:1383px" %)Because of the square combination rule, the results summed by direction (//Sum, x’//, //Sum, y’//, //Sum, z//) and the total sum (//Seismic max//) give only positive values, so absolute maximums. Also, because of combination rule, the displacement components and the internal forces in one point are not simultaneous results.
891 891  
892 -==== Summary of Static and Seismic Effects ====
865 +== Summary of Static and Seismic Effects ==
893 893  
894 894  Seismic effect can be combined with static loads in two ways:
895 895  
896 --     By defining new [[(% class="wikiinternallink" %)**load cases**>>path:#_Load_Cases]](%%) contain equivalent seismic loads to take them into consideration at analysis or design calculations as real static loads,
869 +* By defining new (% class="wikiinternallink" %)**load cases**(%%) contain equivalent seismic loads to take them into consideration at analysis or design calculations as real static loads,
870 +* By adding the maximum seismic effect to load combinations or load groups.
897 897  
898 --                            By adding the maximum seismic effect to load combinations or load groups.
872 +=== **Seismic loads as load cases** ===
899 899  
900 -**Seismic loads as load cases**
874 +The //x' //and //y'// directional loads (also torsional moments) equivalent to the horizontal ground motion can be converted to load cases. (% class="wikiinternallink" %)**Seismic,...”-type load cases**(%%) behave as static loads: they can be combined, they can be added to groups, and they can be taken into consideration at stability, imperfection and design calculations. As you see in the list of load case types, the seismic effects can be considered with positive and/or negative sign.
901 901  
902 -The //x' //and //y'// directional loads (also torsional moments) equivalent to the horizontal ground motion can be converted to load cases. [[(% class="wikiinternallink" %)**“Seismic,...”-type load cases**>>path:#load_case_seismic]](%%) behave as static loads: they can be combined, they can be added to groups, and they can be taken into consideration at stability, imperfection and design calculations. As you see in the list of load case types, the seismic effects can be considered with positive and/or negative sign.
876 +(% style="text-align:center" %)
877 +[[image:1585302696112-225.png]]
903 903  
904 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png||alt="se_97_load%20cases"]]
905 -
879 +(% style="text-align: center;" %)
906 906  Figure: Seismic effect added as load case
907 907  
908 -**Maximum seismic effect in load combinations**
882 +=== **Maximum seismic effect in load combinations** ===
909 909  
910 910  The total, the maximum seismic effect (see //Seismic max// at //Equivalent loads//) can be added to load combinations. Start the command //Load combinations// (//Loads// menu). Apply //Insert case(s)// on a predefined or new load combination, choose “//(Seismic max)//”, define a load factor and press //OK//.
911 911  
912 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png||alt="se_98_load%20comb"]]
886 +(% style="text-align:center" %)
887 +[[image:1585302666976-738.png]]
913 913  
889 +(% style="text-align: center;" %)
914 914  Figure: Maximum seismic effect added to load combination
915 915  
916 916  **Maximum seismic effect as load group**
... ... @@ -917,14 +917,14 @@
917 917  
918 918  The maximum seismic effect (//Seismic max//) can also be added to groups in all codes. Define a group as “//Seismic//”. The program automatically takes the “//(Seismic max)//” into consideration with +/- values in the generation of the most unfavorable results.
919 919  
920 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png||alt="se_99_load%20group"]]
896 +(% style="text-align:center" %)
897 +[[image:1585302651022-975.png]]
921 921  
899 +(% style="text-align: center;" %)
922 922  Figure: Maximum seismic effect defined as load group
923 923  
902 += Footfall analysis =
924 924  
925 -
926 -=== Footfall analysis ===
927 -
928 928  This calculation method allows for checking the structure's response for an excited vibration.
929 929  
930 930  The calculation can be started in Analysis/Calculations/Footfall analysis. The settings for the calculation can be found under the Setup.... Here one can select one of the three available methods:
... ... @@ -933,30 +933,28 @@
933 933  * Full excitation
934 934  * Rhythmic crowd load (Load case shall be selected with this method)
935 935  
936 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
912 +[[image:1585302627089-203.png]]
937 937  
938 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image006.wmz||alt="MCj04113200000%5b1%5d"]] **It is important to choose the correct method (**Self excitation**, **Full excitation** or **Rhythmic crowd load**), because the analysis will run according to the selected method, even though it’s possible to define both self excitation regions and full excitation points.
914 +|(% style="width:90px" %)[[image:warning.png]]|(% style="width:1400px" %)(((
915 +It is important to choose the correct method (**Self excitation**, **Full excitation** or **Rhythmic crowd load**), because the analysis will run according to the selected method, even though it’s possible to define both self excitation regions and full excitation points.
916 +)))
939 939  
940 940  **Results**
941 941  
942 942  After Footfall calculation, one can check the Eigenfrequency results (masses, vibration shapes), the nodal accelerations and the nodal response factors.
943 943  
944 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png||alt="1547216178765-957.png"]]
922 +[[image:1585302576743-662.png]]
945 945  
946 946  In //Detailed result// one can see the response factor – frequency diagram of a point, if a //Response factor// or //Acceleration// result is shown. Every previously placed point is remembered and named. These points can be deleted with Delete option. Their name and font can be set by //Properties //option.
947 947  
948 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png||alt="1547734518778-950.png"]]
926 +[[image:1585302552305-456.png]]
949 949  
950 950  These results can be listed in Analysis/Footfall analysis.
951 951  
930 += Investigate =
952 952  
953 -=== Investigate ===
954 -
955 955  If a warning message appears during calculation (e.g. Load mismatch or Finite element mesh problem) there is a possibility to check and fix the error by navigating in the model with //Investigate//.
956 956  
957 957  The following pictures show a badly defined load and how can the user check and fix the error with //Investigate// function.
958 958  
959 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
960 -
961 -
962 -
936 +[[image:1585302527723-346.png]]
Copyright 2020 StruSoft AB
FEM-Design Wiki