<
From version < 241.1 >
edited by Fredrik Lagerström
on 2020/04/02 10:44
To version < 242.1 >
edited by Fredrik Lagerström
on 2020/04/03 11:27
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  Depending on the current FEM-Design module you can do different calculations: displacement, internal forces, stresses, stability, imperfections, stability analysis, eigenfrequencies and/or seismic analysis. Some extra settings such as cracked-section analysis, non-linear behaviour etc. are also available for certain modules.
6 6  
7 -(% style="width:610px" %)
7 +(% class="table-hover" style="width:610px" %)
8 8  |(% style="width:259px" %)Analysis type/settings|(% style="text-align:center; width:77px" %)[[image:1585304282722-904.png]]|(% style="text-align:center; width:62px" %)[[image:1585304287939-388.png]]|(% style="text-align:center; width:69px" %)[[image:1585304293078-535.png]]|(% style="text-align:center; width:70px" %)[[image:1585304298027-412.png]]|(% style="text-align:center; width:70px" %)[[image:1585304303530-165.png]]
9 9  |(% style="width:259px" %)Analysis for load cases|(% style="text-align:center; width:77px" %)[[image:1585304316868-130.png]]|(% style="text-align:center; width:62px" %)[[image:1585304325317-999.png]]|(% style="text-align:center; width:69px" %)[[image:1585304325976-532.png]]|(% style="text-align:center; width:70px" %)[[image:1585304326683-198.png]]|(% style="text-align:center; width:70px" %)[[image:1585304335642-255.png]]
10 10  |(% style="width:259px" %)Analysis for load combinations|(% style="text-align:center; width:77px" %)[[image:1585304320572-882.png]]|(% style="text-align:center; width:62px" %)[[image:1585304324426-152.png]]|(% style="text-align:center; width:69px" %)[[image:1585304345360-694.png]]|(% style="text-align:center; width:70px" %)[[image:1585304337095-717.png]]|(% style="text-align:center; width:70px" %)[[image:1585304348201-717.png]]
... ... @@ -165,7 +165,7 @@
165 165  
166 166  Figure: Starting analysis for load cases and/or load combinations
167 167  
168 -(% style="width:832px" %)
168 +(% class="table-hover" style="width:832px" %)
169 169  |(% style="width:258px" %)Analysis result|(% style="text-align:center; width:140px" %)[[image:1585304956671-742.png]]|(% style="text-align:center; width:119px" %)[[image:1585304961773-996.png]]|(% style="text-align:center; width:103px" %)[[image:1585304967386-132.png]]|(% style="text-align:center; width:106px" %)[[image:1585304972170-610.png]]|(% style="text-align:center; width:103px" %)[[image:1585304976957-116.png]]
170 170  |(% style="width:258px" %)**//Translational displacements//**|(% style="text-align:center; width:140px" %)(((
171 171  [[image:1585304993442-804.png]]
... ... @@ -256,6 +256,7 @@
256 256  
257 257  The available result components:
258 258  
259 +(% class="table-hover" %)
259 259  |//Fx’ /// //Fy’ /// //Fz’//    |Reaction force in the local x’/y’/z’ axis of the support ((% class="wikiinternallink" %)**group**(%%));
260 260  |//Fr//|Resultant of the reaction force components (//support group//);
261 261  |//F//|Reaction force of the (% class="wikiinternallink" %)**single support**(%%);
... ... @@ -371,7 +371,7 @@
371 371  
372 372  // My’ / Mz’//               - bending moment around the local y’/z’ axis of the bar element.
373 373  
374 -|[[image:warning.png]]|[[(% class="wikiinternallink" %)**Truss members**>>doc:Manuals.User Manual.Structure definition.Truss member (Geometry).WebHome]](%%) bear only normal forces (N).
375 +|(% style="width:120px" %)[[image:warning.png]]|(% style="width:1370px" %)[[(% class="wikiinternallink" %)**Truss members**>>doc:Manuals.User Manual.Structure definition.Truss member (Geometry).WebHome]](%%) bear only normal forces (N).
375 375  
376 376  **~ **
377 377  
... ... @@ -384,6 +384,7 @@
384 384  
385 385  The [[image:1585547429886-498.png]] //Plate// module calculates internal forces in the [[(% class="wikiinternallink" %)**plate**>>doc:Manuals.User Manual.Structure definition.Plate (Geometry).WebHome]](%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%):
386 386  
388 +(% class="table-hover" %)
387 387  | |//Mx’//|bending moment around the **global** **Y axis**;
388 388  | |//My’//|bending moment around the **global** **X axis**;
389 389  | |//Mx’y’//|torsion moment;
... ... @@ -396,6 +396,7 @@
396 396  
397 397  The [[image:1585547536999-311.png]] //Wall// module calculates internal forces in the [[(% class="wikiinternallink" %)**wall**>>doc:Manuals.User Manual.Structure definition.Wall (Geometry).WebHome]](%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%):
398 398  
401 +(% class="table-hover" %)
399 399  | |//Nx’//|normal force in the global X direction;
400 400  | |//Ny’//|normal force in the global Y direction;
401 401  | |//Nx’y’//|shear force in the global X-Y plane;
... ... @@ -406,6 +406,7 @@
406 406  
407 407  The [[image:1585547574297-800.png]] //3D Structure// module calculates internal forces and moments in the planar object regions (plate and wall) in their local coordinate system:
408 408  
412 +(% class="table-hover" %)
409 409  | |//Mx’//|bending moment around the **local y’ axis** of the region element
410 410  | |//My’//|bending moment around the **local x’ axis** of the region element
411 411  | |//Mx’y’//|torsion moment
... ... @@ -439,6 +439,7 @@
439 439  
440 440  So, depending on the current FEM-Design module, we get results from the following:
441 441  
446 +(% class="table-hover" %)
442 442  | |//Sigma x’, top//|normal stress from //Nx’// in top plane
443 443  | |//Sigma x’, membrane//|normal stress from //Nx’// in membrane plane
444 444  | |//Sigma x’, bottom//|normal stress from //Nx’// in bottom plane
... ... @@ -471,7 +471,6 @@
471 471  
472 472  [[image:1585561847367-574.png]]
473 473  
474 -
475 475  Figure: Equilibrium check of Analysis calculations
476 476  
477 477  If equilibrium error derives from an analysis calculation, the error will be appeared in percentage in the Error column by equation types (force (F) and moment (M)) and directions (x, y and z directions of the global coordinate system). “Error” shows the differences between the resultants of the queried loads and the calculated reactions.
... ... @@ -591,12 +591,12 @@
591 591  [[image:1585566123852-913.png]]
592 592  Figure: Imperfection calculation by load combination
593 593  \\For the automatic imperfection calculation you got the buckling shape of the structure with real size in real dimension. Critical parameter assigned to a buckling shape is also available with the following meaning:
594 -\\ //critical parameter = critical buckling force/actual load//
598 +\\ //critical parameter = critical buckling force/actual load//
595 595  \\or in other words:
596 596  if the critical parameter is bigger than 1, the structure or a part of it is sufficient to perform the stability analysis; if it is smaller it is not.
597 597  If the critical parameters differ a lot between the buckling lengths, the first buckling shape is the critical. If the critical parameter values are close to each other, it is your decision what structural part you check by its shape.
598 598  \\The factor defines the real imperfect shape, so:
599 -\\\\ //imperfect shape in real dimension = factor * buckling shape//
603 +\\\\ //imperfect shape in real dimension = factor * buckling shape//
600 600  \\[[image:1585566211268-838.png]]
601 601  Figure: Automatic imperfect shape calculation
602 602  
Copyright 2020 StruSoft AB
FEM-Design Wiki