<
From version < 189.1 >
edited by Fredrik Lagerström
on 2020/03/30 07:52
To version < 189.2 >
edited by Fredrik Lagerström
on 2020/03/30 07:53
>
Change comment: (Autosaved)

Summary

Details

Page properties
Content
... ... @@ -285,11 +285,13 @@
285 285  
286 286  After calculating the load combinations the Local stability results (Overturning of walls and Sliding) are available in Display results dialog.
287 287  
288 -**//[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]//**
288 +(% style="text-align:center" %)
289 +[[image:1585547022222-946.png]]
289 289  
291 +(% style="text-align: center;" %)
290 290  Figure: Display local stability results
291 291  
292 -* //Overturning of walls//
294 +=== //Overturning of walls// ===
293 293  
294 294  Only those walls can be calculated which have at least one horizontal edge in the bottom and edge connection is defined for it. The result is expressed as a percentage:
295 295  
... ... @@ -297,66 +297,58 @@
297 297  * 100% belongs to the case when the vertical force acts at one of the corners,
298 298  * 1000% belongs to the case when the resultant is outside the wall edge.
299 299  
302 +[[image:1585547048276-661.png]]
303 +
300 300  Figure: Overturning of walls
301 301  
302 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] Overturning of walls results are informative. Without accurate modelling it may lead to incorrect results!
306 +|(% style="width:131px" %)[[image:warning.png]]|(% style="width:1359px" %)Overturning of walls results are informative. Without accurate modelling it may lead to incorrect results!
303 303  
304 -* //Sliding of edge connections//
308 +=== //Sliding of edge connections// ===
305 305  
306 306  The result is the ratio of the design force and the friction capacity. The friction factor can be set in the edge connection dialog.
307 307  
308 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
312 +[[image:1585547126598-353.png]]
309 309  
310 310  Figure: Sliding of a wall
311 311  
312 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image018.jpg]]
316 +[[image:1585547131510-171.png]]
313 313  
314 -
315 -
316 316  Numerical example below will illustrate the //Local Stability//.
317 317  
318 318  Geometry and Loads
319 319  
320 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
322 +[[image:1585547154077-678.png]]
321 321  
322 322  Properties of edge connections
323 323  
324 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
326 +[[image:1585547161344-140.png]]
325 325  
326 326  Non-linear calculation (which allows uplift) is recommended to get correct result for local stability.
327 327  
328 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
330 +[[image:1585547172181-338.png]]
329 329  
330 330  Displacement graph (as well as connection force) is the easiest way to check the uplift.
331 331  
332 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
334 +[[image:1585547178112-890.png]]
333 333  
334 -Overturning of wall
336 +=== Overturning of wall ===
335 335  
336 336  With the help of resultants of edge connections, wall’s overturning can be examined as below.
337 337  
338 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
340 +[[image:1585547188350-275.png]]
339 339  
340 -//F=i=1nFi= -190-110= -300 kN//[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
342 +[[image:1585547215701-810.png]]
341 341  
342 -//MC=i=1nMi+Fi* vi= -429+190*2-53-110*4= -542 kNm//[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
344 +[[image:1585547223264-860.png]]
343 343  
344 -//e= MCF=-542-300=1.81 m//[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
346 +=== Sliding of edge connections ===
345 345  
346 -//Utilization= ed*100 %=1.815.00*100=36%  //[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
347 -
348 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
349 -
350 -Sliding of edge connections
351 -
352 352  Edge connection’s sliding is calculated in each edge connection //separately// by comparing the x’ component of the connection force as design force, and the limit  force calculated by the y’ components of the connection forces and the friction coefficient of the edge connection.
353 353  
354 -[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]] [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
350 +[[image:1585547244066-211.png]] [[image:1585547248608-736.png]]
355 355  
356 -//Flim=μ*i=1nfi*dxi= 0.3*(15*0.4+50*0.4+83*0.4+126*0.4)= 32.9 kN//[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
352 +[[image:1585547266844-316.png]]
357 357  
358 -//Utilization= FFlim*100 %=51.632.9*100=157.1%//[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
359 -
360 360  == Bar Internal Forces ==
361 361  
362 362  The program calculates internal forces and/or moments in the bar elements depending on the applied FEM-Design module.
... ... @@ -363,28 +363,28 @@
363 363  
364 364  The available result components:
365 365  
366 -// N//          - normal (axial) force (local x’ axis of the bar element);
360 +// N//  - normal (axial) force (local x’ axis of the bar element);
367 367  
368 -// Ty’ / Tz’//                                                                                                                - shear force in the local y’/z’ axis direction of the bar element);
362 +// Ty’ / Tz’//                 - shear force in the local y’/z’ axis direction of the bar element);
369 369  
370 -// Mt//                                                                                                                            - torsion moment (around the local x’ axis of the bar element);
364 +// Mt//                          - torsion moment (around the local x’ axis of the bar element);
371 371  
372 -// My’ / Mz’//                                                                                - bending moment around the local y’/z’ axis of the bar element.
366 +// My’ / Mz’//               - bending moment around the local y’/z’ axis of the bar element.
373 373  
374 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] (% class="wikiinternallink" %)Truss members(%%)** bear only normal forces (N).
368 +|[[image:warning.png]]|[[(% class="wikiinternallink" %)**Truss members**>>doc:Manuals.User Manual.Structure definition.Truss member (Geometry).WebHome]](%%) bear only normal forces (N).
375 375  
376 - The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates internal forces only for beams. Columns are point supports.
370 +**~ **
377 377  
378 -In [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png||alt="icon_PREDESIGNMODULE"]] //PreDesign//, although the 3D model contains all types of elements, internal forces are calculated in columns.
372 +The [[image:1585547397182-463.png]] //Plate// module calculates internal forces only for [[beams>>doc:Manuals.User Manual.Structure definition.Beam (Geometry).WebHome]]. [[Columns>>doc:Manuals.User Manual.Structure definition.Column (Geometry).WebHome]] are point supports.
379 379  
380 380  
381 -
382 382  == Shell Internal Forces ==
383 383  
384 384  Depending on the current FEM-Design module, the program calculates internal forces and/or moments in the planar structural elements
385 385  
386 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates internal forces in the (% class="wikiinternallink" %)**plate**(%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%):
379 +The [[image:1585547429886-498.png]] //Plate// module calculates internal forces in the [[(% class="wikiinternallink" %)**plate**>>doc:Manuals.User Manual.Structure definition.Plate (Geometry).WebHome]](%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%):
387 387  
381 +
388 388  //M**x’**/ M**y’**//                - bending moment around the **global** **Y / X axis**;
389 389  
390 390  //Mx’y’//                       - torsion moment;
... ... @@ -395,9 +395,9 @@
395 395  
396 396  //M1/M2//                     - principal moment directions.
397 397  
398 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Although //Analysis// calculations give results for the **global Descartes system**, internal forces can be asked and displayed in arbitrary (reinforcement) directions by checking (% class="wikiinternallink" %)**design forces**(%%) in case of (% class="wikiinternallink" %)**RC design**.
392 +|[[image:light.png]]|Although //Analysis// calculations give results for the **global Descartes system**, internal forces can be asked and displayed in arbitrary (reinforcement) directions by checking (% class="wikiinternallink" %)**design forces**(%%) in case of (% class="wikiinternallink" %)**RC design**.
399 399  
400 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png||alt="icon_WALLMODULE"]] //Wall// module calculates internal forces in the (% class="wikiinternallink" %)**wall**(%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%):
394 +The [[image:1585547536999-311.png]] //Wall// module calculates internal forces in the [[(% class="wikiinternallink" %)**wall**>>doc:Manuals.User Manual.Structure definition.Wall (Geometry).WebHome]](%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%):
401 401  
402 402  //Nx’ /// //Ny’//               - normal force in the global X / Y direction;
403 403  
... ... @@ -407,9 +407,9 @@
407 407  
408 408  //N1/N2//                     - principal normal directions.
409 409  
410 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png||alt="icon_PLANESTRAIN"]] //Plane Strain// module calculates only the (% class="wikiinternallink" %)**shear stresses**(%%) in the (% class="wikiinternallink" %)**wall**(%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%).
404 +The [[image:1585547568303-618.png]] //Plane Strain// module calculates only the (% class="wikiinternallink" %)**shear stresses**(%%) in the (% class="wikiinternallink" %)**wall**(%%) regions and in the (% class="wikiinternallink" %)**Global coordinate system**(%%).
411 411  
412 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png||alt="icon_3DSTRU"]] //3D Structure// module calculates internal forces and moments in the planar object regions (plate and wall) in their local coordinate system:
406 +The [[image:1585547574297-800.png]] //3D Structure// module calculates internal forces and moments in the planar object regions (plate and wall) in their local coordinate system:
413 413  
414 414  //M**x’** /// //M**y’**//              - bending moment around the **local y’ / x’ axis** of the region element;
415 415  
... ... @@ -429,8 +429,6 @@
429 429  
430 430  //N1/N2//                     - principal normal directions.
431 431  
432 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png||alt="icon_PREDESIGNMODULE"]] //PreDesign// module calculates the previous internal forces and moments but only walls.
433 -
434 434  == Bar Stresses ==
435 435  
436 436  FEM-Design calculates the normal stress in bar elements (beams, columns and/or truss members) with the following meaning:
... ... @@ -713,7 +713,7 @@
713 713  
714 714  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **Dynamic calculation requires (% class="wikiinternallink" %)**masses**(%%) to be predefined.
715 715  
716 -[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Seismic analysis**>>path:#_Seismic_Analysis]](%%) needs the eigenfrequencies calculations.
708 +[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Seismic analysis**>>path:#_Seismic_Analysis]](%%) needs the eigenfrequencies calculations.
717 717  
718 718  In Calculation / Eigenfrequencies dialog the user can set the level of top of the substructure. The masses will be neglected __at__ and __under__ this level.
719 719  
Copyright 2020 StruSoft AB
FEM-Design Wiki