<
From version < 18.1 >
edited by Fredrik Lagerström
on 2020/03/27 10:43
To version < 19.1 >
edited by Fredrik Lagerström
on 2020/03/27 10:43
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,7 +19,6 @@
19 19  |Cracked-section analysis| | | |[[image:image-20200327104026-47.png]]| |[[image:image-20200327104026-49.png]]
20 20  |Peak**//-smoothing algorithm//**| | |[[image:image-20200327104026-52.png]]| |[[image:image-20200327104026-54.png]]|
21 21  
22 -
23 23  Table: Analysis features by FEM-Design Modules
24 24  
25 25  Analysis can be done independently from any design calculations by entering to tabmenu and clicking //Calculate// command, or together with [[designs>>path:#_Design]] (RC, Steel or Timber) with the same command.
... ... @@ -72,9 +72,9 @@
72 72  
73 73  [[Non-linear behavior>>path:#_Properties_(Non-Linear_Behaviors)]] of supports (e.g. uplift), connections and truss members (e.g. tension-only) can be considered in analysis calculations (for load-combinations, imperfections and stability) by ticking //NL// checkbox at //Calculations > Analysis > Load combinations > Setup load combinations//.
74 74  
75 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.wmz||alt="MCj02990090000%5b1%5d"]] **“[[Uplift>>path:#Uplift_example]]” can be modeled both in 2D and 3D design modules by defining compression-only //support/////connection// (tension = 0 (free)) and by selecting non-linear calculation for a load combination.
74 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.wmz||alt="MCj02990090000%5b1%5d"]] **“[[Uplift>>path:#Uplift_example]]” can be modeled both in 2D and 3D design modules by defining compression-only //support/connection// (tension = 0 (free)) and by selecting non-linear calculation for a load combination.
76 76  
77 -There is a possibility for the user to set the maximum iteration number of nonlinear calculation in //Non-linear calculations //tab in// Setup load combination calculation// dialog.
76 +There is a possibility for the user to set the maximum iteration number of nonlinear calculation in //Non-linear calculations //tab in// Setup load combination calculation// dialog.
78 78  
79 79  
80 80  **Plastic Analysis                             **
... ... @@ -179,7 +179,7 @@
179 179  
180 180  ==== Displacements ====
181 181  
182 -Depending on the current FEM-Design module, the program calculates and displays the model displacement from linear or non-linear (for RC elements: [[**cracked-section analysis**>>path:#_Cracked-Section_Analysis]]) analysis. There are two types of displacement results: translational or rotational. For bar elements, the motion and rotation components can be displayed separately ([[**Detailed result**>>path:#_Detailed_Bar_Result]]) by direction ([[**local axis**>>path:#_Co-ordinate_Systems]]).
181 +Depending on the current FEM-Design module, the program calculates and displays the model displacement from linear or non-linear (for RC elements: [[(% class="wikiinternallink" %)**cracked-section analysis**>>path:#_Cracked-Section_Analysis]](%%)) analysis. There are two types of displacement results: translational or rotational. For bar elements, the motion and rotation components can be displayed separately ([[(% class="wikiinternallink" %)**Detailed result**>>path:#_Detailed_Bar_Result]](%%)) by direction ([[(% class="wikiinternallink" %)**local axis**>>path:#_Co-ordinate_Systems]](%%)).
183 183  
184 184  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **In [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate//, the displacements are calculated for the plate regions and beam elements, and the motion is parallel with the global Z direction, so perpendicular to the plate regions. Only reactions can be asked for columns (point reaction) and walls (line reaction).
185 185  
... ... @@ -187,23 +187,23 @@
187 187  
188 188  In [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png||alt="icon_PREDESIGNMODULE"]] //PreDesign//, although the 3D model contains all types of elements, displacements are calculated for the vertical elements such as columns and walls.
189 189  
190 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Displacement results are recommended to be asked for [[**serviceability load combinations**.>>path:#_Load_Combination]]
189 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Displacement results are recommended to be asked for [[(% class="wikiinternallink" %)**serviceability load combinations**.>>path:#_Load_Combination]]
191 191  
192 192  ==== Reactions ====
193 193  
194 -Depending on the support types, the program calculates the reaction forces and/or moments in the [[**supports**>>path:#_Supports]] by direction component, their resultants and the resultant at the support’s center of gravity of line and surface supports.
193 +Depending on the support types, the program calculates the reaction forces and/or moments in the [[(% class="wikiinternallink" %)**supports**>>path:#_Supports]](%%) by direction component, their resultants and the resultant at the support’s center of gravity of line and surface supports.
195 195  
196 196  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates reactions in columns and walls too above the point/line and surface supports.
197 197  
198 198  The available result components:
199 199  
200 -// Fx’ /// //Fy’ /// //Fz’//                                            - reaction force in the local x’/y’/z’ axis of the support ([[**group**>>path:#support_group_chapter]]);
199 +// Fx’ /// //Fy’ /// //Fz’//                                            - reaction force in the local x’/y’/z’ axis of the support ([[(% class="wikiinternallink" %)**group**>>path:#support_group_chapter]](%%));
201 201  
202 202  // Fr//                                                                                                                             - resultant of the reaction force components (//support group//);
203 203  
204 -// F//                                                                                                                                                            - reaction force of the [[**single support**>>path:#support_group_chapter]];
203 +// F//                                                                                                                                                            - reaction force of the [[(% class="wikiinternallink" %)**single support**>>path:#support_group_chapter]](%%);
205 205  
206 -// Mx’ /// //My’ ///// Mz’//          - reaction moment around the local x’/y’/z’ axis of the support (//group//);
205 +// Mx’ /// //My’ / Mz’//          - reaction moment around the local x’/y’/z’ axis of the support (//group//);
207 207  
208 208  // Mr//                                                                                                                           - resultant of the reaction moment components (//support group//);
209 209  
... ... @@ -211,15 +211,15 @@
211 211  
212 212  ==== Connection Forces ====
213 213  
214 -Similarly to reactions, the program calculates the forces and/or moments in the connection objects ([[**Edge connection**>>path:#plate_edge_connection]], [[**Point-point connection**>>path:#point_point_connection_chapter]] and/or [[**Line-line connection**>>path:#line_line_connection_chapter]]) by direction component and their resultants.
213 +Similarly to reactions, the program calculates the forces and/or moments in the connection objects ([[(% class="wikiinternallink" %)**Edge connection**>>path:#plate_edge_connection]](%%), [[(% class="wikiinternallink" %)**Point-point connection**>>path:#point_point_connection_chapter]](%%) and/or [[(% class="wikiinternallink" %)**Line-line connection**>>path:#line_line_connection_chapter]](%%)) by direction component and their resultants.
215 215  
216 216  The available result components:
217 217  
218 -// Fx’ ///// Fy’ /// //Fz’//                                            - connection force in the local x’/y’/z’ axis of the connection;
217 +// Fx’ / Fy’ /// //Fz’//                                            - connection force in the local x’/y’/z’ axis of the connection;
219 219  
220 220  // F           // - resultant of the connection force components;
221 221  
222 -// Mx’ ///// My’ ///// Mz’//          - connection moment around the local x’/y’/z’ axis of the connection;
221 +// Mx’ / My’ / Mz’//          - connection moment around the local x’/y’/z’ axis of the connection;
223 223  
224 224  // M//                                                                                                                             - resultant of the connection moment components.
225 225  
... ... @@ -248,7 +248,6 @@
248 248  * 100% belongs to the case when the vertical force acts at one of the corners,
249 249  * 1000% belongs to the case when the resultant is outside the wall edge.
250 250  
251 -
252 252  Figure: Overturning of walls
253 253  
254 254  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] Overturning of walls results are informative. Without accurate modelling it may lead to incorrect results!
... ... @@ -277,7 +277,7 @@
277 277  
278 278  Non-linear calculation (which allows uplift) is recommended to get correct result for local stability.
279 279  
280 - [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
278 +[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
281 281  
282 282  Displacement graph (as well as connection force) is the easiest way to check the uplift.
283 283  
... ... @@ -317,13 +317,13 @@
317 317  
318 318  // N//          - normal (axial) force (local x’ axis of the bar element);
319 319  
320 -// Ty’ ///// Tz’//                                                                                                                - shear force in the local y’/z’ axis direction of the bar element);
318 +// Ty’ / Tz’//                                                                                                                - shear force in the local y’/z’ axis direction of the bar element);
321 321  
322 322  // Mt//                                                                                                                            - torsion moment (around the local x’ axis of the bar element);
323 323  
324 -// My’ ///// Mz’//                                                                                - bending moment around the local y’/z’ axis of the bar element.
322 +// My’ / Mz’//                                                                                - bending moment around the local y’/z’ axis of the bar element.
325 325  
326 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **[[**Truss members**>>path:#_Truss_Member]] bear only normal forces (N).
324 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **[[(% class="wikiinternallink" %)**Truss members**>>path:#_Truss_Member]](%%) bear only normal forces (N).
327 327  
328 328   The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates internal forces only for beams. Columns are point supports.
329 329  
... ... @@ -335,21 +335,21 @@
335 335  
336 336  Depending on the current FEM-Design module, the program calculates internal forces and/or moments in the planar structural elements
337 337  
338 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates internal forces in the [[**plate**>>path:#_Plate]] regions and in the [[**Global coordinate system**>>path:#_Co-ordinate_Systems]]:
336 +The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module calculates internal forces in the [[(% class="wikiinternallink" %)**plate**>>path:#_Plate]](%%) regions and in the [[(% class="wikiinternallink" %)**Global coordinate system**>>path:#_Co-ordinate_Systems]](%%):
339 339  
340 -//M**x’**///// M**y’**//                - bending moment around the **global** **Y / X axis**;
338 +//M**x’**/ M**y’**//                - bending moment around the **global** **Y / X axis**;
341 341  
342 342  //Mx’y’//                       - torsion moment;
343 343  
344 -//Tx’ ///// Ty’//                 - shear force for the global X / Y normal and in the Z direction;
342 +//Tx’ / Ty’//                 - shear force for the global X / Y normal and in the Z direction;
345 345  
346 -//M1 ///// M2//                 - principal moments;
344 +//M1 / M2//                 - principal moments;
347 347  
348 348  //M1/M2//                     - principal moment directions.
349 349  
350 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Although //Analysis// calculations give results for the **global Descartes system**, internal forces can be asked and displayed in arbitrary (reinforcement) directions by checking [[**design forces**>>path:#_Auto_Design]] in case of [[**RC design**.>>path:#_RC_Design]]
348 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Although //Analysis// calculations give results for the **global Descartes system**, internal forces can be asked and displayed in arbitrary (reinforcement) directions by checking [[(% class="wikiinternallink" %)**design forces**>>path:#_Auto_Design]](%%) in case of [[(% class="wikiinternallink" %)**RC design**.>>path:#_RC_Design]]
351 351  
352 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png||alt="icon_WALLMODULE"]] //Wall// module calculates internal forces in the [[**wall**>>path:#_Wall]] regions and in the [[**Global coordinate system**>>path:#_Co-ordinate_Systems]]:
350 +The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png||alt="icon_WALLMODULE"]] //Wall// module calculates internal forces in the [[(% class="wikiinternallink" %)**wall**>>path:#_Wall]](%%) regions and in the [[(% class="wikiinternallink" %)**Global coordinate system**>>path:#_Co-ordinate_Systems]](%%):
353 353  
354 354  //Nx’ /// //Ny’//               - normal force in the global X / Y direction;
355 355  
... ... @@ -359,7 +359,7 @@
359 359  
360 360  //N1/N2//                     - principal normal directions.
361 361  
362 -The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png||alt="icon_PLANESTRAIN"]] //Plane Strain// module calculates only the [[**shear stresses**>>path:#analysis_shell_stress]] in the [[**wall**>>path:#_Wall]] regions and in the [[**Global coordinate system**>>path:#_Co-ordinate_Systems]].
360 +The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png||alt="icon_PLANESTRAIN"]] //Plane Strain// module calculates only the [[(% class="wikiinternallink" %)**shear stresses**>>path:#analysis_shell_stress]](%%) in the [[(% class="wikiinternallink" %)**wall**>>path:#_Wall]](%%) regions and in the [[(% class="wikiinternallink" %)**Global coordinate system**>>path:#_Co-ordinate_Systems]](%%).
363 363  
364 364  The [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png||alt="icon_3DSTRU"]] //3D Structure// module calculates internal forces and moments in the planar object regions (plate and wall) in their local coordinate system:
365 365  
... ... @@ -373,7 +373,7 @@
373 373  
374 374  //Vx’// / //Vy’//                - shear force for the local x’ / y’ normal and in z’ direction;
375 375  
376 -//M1 ///// M2//                - principal moments;
374 +//M1 / M2//                - principal moments;
377 377  
378 378  //M1/M2                    //- principal moment directions;
379 379  
... ... @@ -397,7 +397,7 @@
397 397  
398 398  ==== Shell Stresses ====
399 399  
400 -The program calculates stresses in the top, bottom and middle (so called “membrane”) planes of the planar elements. The meaning of top and bottom side depends on the position ([[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module) or the [[**local coordinate system**>>path:#_Co-ordinate_Systems]] (3D modules) of a region element.
398 +The program calculates stresses in the top, bottom and middle (so called “membrane”) planes of the planar elements. The meaning of top and bottom side depends on the position ([[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png||alt="icon_PLATEMODULE"]] //Plate// module) or the [[(% class="wikiinternallink" %)**local coordinate system**>>path:#_Co-ordinate_Systems]](%%) (3D modules) of a region element.
401 401  
402 402  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png||alt="anal_membrane.png"]]
403 403  
... ... @@ -427,9 +427,9 @@
427 427  
428 428  ==== Equilibrium Check ====
429 429  
430 -The program automatically checks the equilibrium of the analysis calculations. Statical equation is written to the origin [0; 0; 0] of the [[**Global Coordinate System**>>path:#_Co-ordinate_Systems]]. It compares the sum of the reactions and the sum of applied loads. Equilibriums can be asked by load case and load combination.
428 +The program automatically checks the equilibrium of the analysis calculations. Statical equation is written to the origin [0; 0; 0] of the [[(% class="wikiinternallink" %)**Global Coordinate System**>>path:#_Co-ordinate_Systems]](%%). It compares the sum of the reactions and the sum of applied loads. Equilibriums can be asked by load case and load combination.
431 431  
432 -Just click the [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png||alt="icon_equilibriumcheck.png"]] //Equilibrium// icon (in Analysis or [[**Design**>>path:#_Design]] mode), choose a load case or load combination to see the equilibrium check results.
430 +Just click the [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png||alt="icon_equilibriumcheck.png"]] //Equilibrium// icon (in Analysis or [[(% class="wikiinternallink" %)**Design**>>path:#_Design]](%%) mode), choose a load case or load combination to see the equilibrium check results.
433 433  
434 434  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
435 435  
... ... @@ -444,9 +444,9 @@
444 444  
445 445  Choosing //Load combinations// for Analysis automatically generates results for the maximum of load combinations too.
446 446  
447 -If you define [[**Load groups**>>path:#_Load_Group]] and choose //Maximum of load groups// for Analysis, FEM-Design calculates maximum/minimum results (in all finite element nodes) from the most unfavorable combinations of the load groups according to the applied code.
445 +If you define [[(% class="wikiinternallink" %)**Load groups**>>path:#_Load_Group]](%%) and choose //Maximum of load groups// for Analysis, FEM-Design calculates maximum/minimum results (in all finite element nodes) from the most unfavorable combinations of the load groups according to the applied code.
448 448  
449 -So, maximum and simultaneous results of [[**displacements**>>path:#_Displacements]], [[**reactions**>>path:#_Reactions]], [[**connection forces**>>path:#_Connection_Forces]], internal forces ([[**bar**>>path:#_Bar_Internal_Forces]] and/or [[**shell**>>path:#_Shell_Internal_Forces]]) and stresses ([[**bar**>>path:#_Bar_Stresses]] and/or [[**shell**>>path:#_Shell_Stresses]]) can be calculated for maximum of load combinations and groups.
447 +So, maximum and simultaneous results of [[(% class="wikiinternallink" %)**displacements**>>path:#_Displacements]](%%), [[(% class="wikiinternallink" %)**reactions**>>path:#_Reactions]](%%), [[(% class="wikiinternallink" %)**connection forces**>>path:#_Connection_Forces]](%%), internal forces ([[(% class="wikiinternallink" %)**bar**>>path:#_Bar_Internal_Forces]](%%) and/or [[(% class="wikiinternallink" %)**shell**>>path:#_Shell_Internal_Forces]](%%)) and stresses ([[(% class="wikiinternallink" %)**bar**>>path:#_Bar_Stresses]](%%) and/or [[(% class="wikiinternallink" %)**shell**>>path:#_Shell_Stresses]](%%)) can be calculated for maximum of load combinations and groups.
450 450  
451 451  The symbol “+” and “–“ sign the direction of the maximal value in the valid systems: local or global coordinate systems (depend on the current FEM-Design module). Some examples for the meaning of “+” and “-“:
452 452  
... ... @@ -511,7 +511,6 @@
511 511  |[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image016.wmz||alt="MCj04113200000%5b1%5d"]]|For columns only this (//“Cantilever and column”//) option is available.|
512 512  
513 513  
514 -
515 515  |(((
516 516  **Deflection lengths**
517 517  )))
... ... @@ -561,7 +561,7 @@
561 561  
562 562  * **Imperfection calculation according to the formula EC3: 1-1 (automatic)**
563 563  
564 -For load combinations, the program can calculates the probable imperfect shapes in real dimensions from the mode shapes (get from [[**stability analysis**>>path:#_Stability_Analysis]]) according to Eurocode. [[**Second order analysis**>>path:#_Second_Order_Analysis]] must be run by using imperfection. To do automatic imperfection calculations, activate //Imperfections// and set the required number of the imperfect shapes (//Rqd.// cell) for the load combination which you would like to run imperfection for.
561 +For load combinations, the program can calculates the probable imperfect shapes in real dimensions from the mode shapes (get from [[(% class="wikiinternallink" %)**stability analysis**>>path:#_Stability_Analysis]](%%)) according to Eurocode. [[(% class="wikiinternallink" %)**Second order analysis**>>path:#_Second_Order_Analysis]](%%) must be run by using imperfection. To do automatic imperfection calculations, activate //Imperfections// and set the required number of the imperfect shapes (//Rqd.// cell) for the load combination which you would like to run imperfection for.
565 565  
566 566  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png||alt="anal_imp1.png"]]
567 567  
... ... @@ -589,7 +589,7 @@
589 589  
590 590  === Stability Analysis ===
591 591  
592 -In 3D modules, global stability of the structure can be analyzed automatically if it is requested. Similarly to [[**Imperfections**>>path:#_Imperfections]], the program calculates buckling shapes together with their critical parameters for selected load combinations.
589 +In 3D modules, global stability of the structure can be analyzed automatically if it is requested. Similarly to [[(% class="wikiinternallink" %)**Imperfections**>>path:#_Imperfections]](%%), the program calculates buckling shapes together with their critical parameters for selected load combinations.
593 593  
594 594  To do stability analysis, activate //Stability analysis// and set the required number of the buckling shapes (//Rqd.// cell) for the load combination which you would ask stability results for.
595 595  
... ... @@ -609,7 +609,7 @@
609 609  
610 610  if the critical parameter is bigger than 1, the structure or a part of it is sufficient to perform the stability analysis; if it is smaller it is not.
611 611  
612 - [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
609 +[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
613 613  
614 614  Figure: Buckling shape calculation
615 615  
... ... @@ -635,7 +635,6 @@
635 635  __Local__ in rotational direction
636 636  )))
637 637  
638 -
639 639   In the example below, the //eH// value of the first shape is 89%, which means it is probably a global buckling shape with horizontal displacement.[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
640 640  
641 641  
... ... @@ -643,14 +643,13 @@
643 643  
644 644  The same structure’s second shape possesses a very high //rZ// value (99%), meaning this almost certainly is a global torsional buckling shape (shown in the middle inset).
645 645  
646 -The fourth shape’s //eH, eV //and// rZ// values are significantly lower, which implies it is a local buckling shape. As the rightmost inset shows, the assumption was correct (local buckling of both columns).
642 +The fourth shape’s //eH, eV //and// rZ// values are significantly lower, which implies it is a local buckling shape. As the rightmost inset shows, the assumption was correct (local buckling of both columns).
647 647  
648 648  
649 649  |[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]]|Higher probability values shows high probability that the shape is global. If there are not enough shapes calculated, none might be global.|
650 650  
647 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Before stability analysis, it is recommended to set minimum 4-5 [[(% class="wikiinternallink" %)**division numbers**>>path:#FEM_division_number_chapter]](%%) (finite elements) for bars.
651 651  
652 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Before stability analysis, it is recommended to set minimum 4-5 [[**division numbers**>>path:#FEM_division_number_chapter]] (finite elements) for bars.
653 -
654 654  === Eigenfrequencies ===
655 655  
656 656  ==== Mass/Vibration shape ====
... ... @@ -663,13 +663,13 @@
663 663  * The 90% total effective mass is reached in horizontal direction
664 664  * The maximum iteration number is reached
665 665  
666 - [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
661 +[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
667 667  
668 668  Figure: Dynamic calculation
669 669  
670 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **Dynamic calculation requires [[**masses**>>path:#_Mass]] to be predefined.
665 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **Dynamic calculation requires [[(% class="wikiinternallink" %)**masses**>>path:#_Mass]](%%) to be predefined.
671 671  
672 -[[**Seismic analysis**>>path:#_Seismic_Analysis]] needs the eigenfrequencies calculations.
667 +[[(% class="wikiinternallink" %)**Seismic analysis**>>path:#_Seismic_Analysis]](%%) needs the eigenfrequencies calculations.
673 673  
674 674  In Calculation / Eigenfrequencies dialog the user can set the level of top of the substructure. The masses will be neglected __at__ and __under__ this level.
675 675  
... ... @@ -684,7 +684,7 @@
684 684  
685 685  Results of Eigienfrequencies calculation:
686 686  
687 -//Masses//                   - mass matrix of [[**point masses**>>path:#_Mass]] and/or [[**masses calculated from load cases**>>path:#load_loadcase_mass_conversion]] converted into finite element nodes;
682 +//Masses//                   - mass matrix of [[(% class="wikiinternallink" %)**point masses**>>path:#_Mass]](%%) and/or [[(% class="wikiinternallink" %)**masses calculated from load cases**>>path:#load_loadcase_mass_conversion]](%%) converted into finite element nodes;
688 688  
689 689  //Vibration shape//   - vibration shape and associated eigeinfrequency (//Frequency//) and periodic time (//Period//).
690 690  
... ... @@ -691,7 +691,7 @@
691 691  
692 692  Figure: Results of dynamic calculations
693 693  
694 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Before dynamic analysis, it is recommended to set minimum 4-5 [[**division numbers**>>path:#FEM_division_number_chapter]] (finite elements) for bars.
689 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **Before dynamic analysis, it is recommended to set minimum 4-5 [[(% class="wikiinternallink" %)**division numbers**>>path:#FEM_division_number_chapter]](%%) (finite elements) for bars.
695 695  
696 696  ==== Shear center result ====
697 697  
... ... @@ -704,7 +704,6 @@
704 704  |[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]]|Each displayed shear center represents the result of a calculation based on the storeys below that storey. For example, the calculation of the center displayed on “Storey 2” takes also “Storey 1” and “Foundation” into account.
705 705  
706 706  
707 -
708 708  |(((
709 709  Values in the Tooltip:
710 710  
... ... @@ -714,12 +714,11 @@
714 714  )))
715 715  
716 716  
717 -
718 718  Shear center results can be listed in //List tables dialog/Analysis/Eigenfrequencies/Shear center.//
719 719  
720 720  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
721 721  
722 - [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
715 +[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
723 723  
724 724  
725 725  === Seismic Analysis ===
... ... @@ -733,12 +733,12 @@
733 733  
734 734  This method can be used to calculate the seismic effect in horizontal plan, x’ and/or y’ direction. The main point is to calculate “base shear force” taking into account the base vibration period and design spectrum in x’ or y’ direction, which is distributed into those nodes of the structure where there are nodal masses. The “base shear force” formula is taken from //EC-8 4.3.3.2.2(1)P//. The “base shear force” is nothing else than the total seismic force of inertia that acts between the ground and the structure, and it can be distributed in two ways:
735 735  
736 -*
729 +*
737 737  ** **Linear shape method (Static, linear shape)**
738 738  
739 739  The distribution of the “base shear force” happens according to a simplified fundamental mode shape, which is approximated by horizontal displacements that increased linearly along the height.
740 740  
741 -*
734 +*
742 742  ** **Mode shape method (Static, mode shape)**
743 743  
744 744  See the detailed description and the applied theory of all calculation methods in the //Theory book//. This guide introduces only the user interface and the steps of seismic analysis.
... ... @@ -749,23 +749,22 @@
749 749  
750 750  1. **Mass definition**
751 751  
752 -To calculate the seismic effect, it is necessary to know the vibration shapes and corresponding periods (except the //Static, linear shape// method). To perform dynamic calculations, it is necessary to define mass distribution which can be defined as [[**concentrated mass**>>path:#_Mass]] or [[**load case-mass conversion**>>path:#load_loadcase_mass_conversion]].
745 +To calculate the seismic effect, it is necessary to know the vibration shapes and corresponding periods (except the //Static, linear shape// method). To perform dynamic calculations, it is necessary to define mass distribution which can be defined as [[(% class="wikiinternallink" %)**concentrated mass**>>path:#_Mass]](%%) or [[(% class="wikiinternallink" %)**load case-mass conversion**>>path:#load_loadcase_mass_conversion]](%%).
753 753  
754 754  1. **Design spectrum definition**
755 755  
756 -
757 757  |(((
758 758  
759 759  )))
760 760  
761 -The program contains predefined [[**design spectra**>>path:#load_design_spectra]] according to //EC8//, but you can also define your own spectra. Use the command [[**Seismic load**>>path:#_Seismic_Load]] (//Loads// menu).
753 +The program contains predefined [[(% class="wikiinternallink" %)**design spectra**>>path:#load_design_spectra]](%%) according to //EC8//, but you can also define your own spectra. Use the command [[(% class="wikiinternallink" %)**Seismic load**>>path:#_Seismic_Load]](%%) (//Loads// menu).
762 762  
763 763  
764 764  1. **Dynamic calculation**
765 765  
766 -[[**Dynamic calculation**>>path:#_Eigenfrequencies]] should be done before performing seismic calculation, which gives sufficient vibration shapes of the structure. Although setup for the seismic calculation can be done at any time, but the seismic calculation could be performed only after //Eigenfrequency// calculation. Run dynamic calculation under //Analysis// by setting the required number of vibration shapes.
758 +[[(% class="wikiinternallink" %)**Dynamic calculation**>>path:#_Eigenfrequencies]](%%) should be done before performing seismic calculation, which gives sufficient vibration shapes of the structure. Although setup for the seismic calculation can be done at any time, but the seismic calculation could be performed only after //Eigenfrequency// calculation. Run dynamic calculation under //Analysis// by setting the required number of vibration shapes.
767 767  
768 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **It is suggested to set the finite element number bigger than 1 at bars (//Finite elements/ //[[**Division number**>>path:#FEM_division_number_chapter]]).
760 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **It is suggested to set the finite element number bigger than 1 at bars (//Finite elements/ //[[(% class="wikiinternallink" %)**Division number**>>path:#FEM_division_number_chapter]](%%)).
769 769  
770 770  1. **Settings of seismic calculation**
771 771  
... ... @@ -784,7 +784,7 @@
784 784  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png||alt="se_89_seismic_linear"]]
785 785  )))
786 786  
787 -You may set the calculation direction to be performed by selecting the desired direction. To set the desired //x’-y’// direction, you should give //Alfa// ( is the angle between the global //X// and //x’//; see [[**Direction of the horizontal effect**>>path:#direction_of_the_horizontal_effect]]).  =0.0 means //x’-y’// directions coincide with global //X-Y// directions.
779 +You may set the calculation direction to be performed by selecting the desired direction. To set the desired //x’-y’// direction, you should give //Alfa// ( is the angle between the global //X// and //x’//; see [[(% class="wikiinternallink" %)**Direction of the horizontal effect**>>path:#direction_of_the_horizontal_effect]](%%)).  =0.0 means //x’-y’// directions coincide with global //X-Y// directions.
788 788  
789 789  
790 790  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image010.wmz||alt="MCj04113200000%5b1%5d"]] **This method is unusable, if the whole foundation is not in same plane or the horizontal foundation is elastic. In these cases, //Static, mode shape// or //Modal analysis// should be used.
... ... @@ -801,7 +801,7 @@
801 801  The table shows how to select the base vibration shapes. It contains all mode shapes (//No//), the vibration time (//T(s)//) and effective masses of the mode shapes in //x’// and //y’// directions (//mx’~(%)// and //my’~(%)//). The effective masses are given in a relative form to the total or reduced mass of the structure. The reduced mass means the total mass above the foundation or above the rigid basement. The value of the effective mass refers to how the mode shape responds to a ground motion direction, so the effective mass shows the participation weight of the mode shape.
802 802  
803 803  
804 -//Select// (or double-click on it) one mode shape in //x'// or/and //y'// direction(s) (//mx’ /////my’//). (Yellow field color shows the activation.)
796 +//Select// (or double-click on it) one mode shape in //x'// or/and //y'// direction(s) (//mx’ /my’//). (Yellow field color shows the activation.)
805 805  
806 806  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image011.wmz||alt="MCj02990090000%5b1%5d"]] **It is recommended to select that mode shape which gives the largest effective mass as the fundamental mode shape.
807 807  
... ... @@ -859,7 +859,6 @@
859 859  )))
860 860  
861 861  
862 -
863 863  In //FEM-Design// “//Reduced mass//” means the difference between the total mass of the structure and the basement mass. The basement mass is the sum of all masses which lay on the foundation level (set at //Seismic load/ Others//).
864 864  
865 865  **[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image006.wmz||alt="MCj04113200000%5b1%5d"]] **//EC8// defines the total mass without basement (//Reduced mass//). The effective masses are generally compared to the //Reduced mass//, but this is not valid for the massive basement with elastic foundation. If the above mentioned situation is the case, it might happen that the sum of the effective masses of a column is larger than the 100%.
... ... @@ -874,7 +874,6 @@
874 874  )))
875 875  
876 876  
877 -
878 878  **Combination rule**
879 879  
880 880  The combination rule of effects in the //x'//, //y'// and maybe //z// directions can be set here. You can choose from two possibilities.
... ... @@ -883,7 +883,7 @@
883 883  
884 884  Additional effects can be taken into consideration during seismic calculation. See the detailed description of these effects in //Theory book//.
885 885  
886 -**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image006.wmz||alt="MCj04113200000%5b1%5d"]] **The calculation of both effects needs the definition of [[**storeys**>>path:#_Storey]].
876 +**[[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image006.wmz||alt="MCj04113200000%5b1%5d"]] **The calculation of both effects needs the definition of [[(% class="wikiinternallink" %)**storeys**>>path:#_Storey]](%%).
887 887  
888 888  1. **Seismic calculation**
889 889  
... ... @@ -891,7 +891,7 @@
891 891  
892 892  ==== The Results ====
893 893  
894 -Besides [[**displacements**>>path:#_Displacements]], [[**reactions**>>path:#_Reactions]], [[**connection forces**>>path:#_Connection_Forces]] and [[**internal forces**>>path:#_Bar_Internal_Forces]], the program calculates the //Equivalent loads// and the “//Base shear force//”. Results can be displayed by vibration shape (selected at calculation settings), from torsional effect, from sums by direction and from the total sum (//Seismic max//). If equivalent loads are displayed, also the “base shear force” appears on screen (in grey color). Torsional moment effect on the whole structure can also be displayed, if torsional effect was taken into consideration during calculation.
884 +Besides [[(% class="wikiinternallink" %)**displacements**>>path:#_Displacements]](%%), [[(% class="wikiinternallink" %)**reactions**>>path:#_Reactions]](%%), [[(% class="wikiinternallink" %)**connection forces**>>path:#_Connection_Forces]](%%) and [[(% class="wikiinternallink" %)**internal forces**>>path:#_Bar_Internal_Forces]](%%), the program calculates the //Equivalent loads// and the “//Base shear force//”. Results can be displayed by vibration shape (selected at calculation settings), from torsional effect, from sums by direction and from the total sum (//Seismic max//). If equivalent loads are displayed, also the “base shear force” appears on screen (in grey color). Torsional moment effect on the whole structure can also be displayed, if torsional effect was taken into consideration during calculation.
895 895  
896 896  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png||alt="se_96_seismic%20results"]]
897 897  
... ... @@ -903,13 +903,13 @@
903 903  
904 904  Seismic effect can be combined with static loads in two ways:
905 905  
906 --     By defining new [[**load cases**>>path:#_Load_Cases]] contain equivalent seismic loads to take them into consideration at analysis or design calculations as real static loads,
896 +-     By defining new [[(% class="wikiinternallink" %)**load cases**>>path:#_Load_Cases]](%%) contain equivalent seismic loads to take them into consideration at analysis or design calculations as real static loads,
907 907  
908 908  -                            By adding the maximum seismic effect to load combinations or load groups.
909 909  
910 910  **Seismic loads as load cases**
911 911  
912 -The //x' //and //y'// directional loads (also torsional moments) equivalent to the horizontal ground motion can be converted to load cases. [[**“Seismic,...”-type load cases**>>path:#load_case_seismic]] behave as static loads: they can be combined, they can be added to groups, and they can be taken into consideration at stability, imperfection and design calculations. As you see in the list of load case types, the seismic effects can be considered with positive and/or negative sign.
902 +The //x' //and //y'// directional loads (also torsional moments) equivalent to the horizontal ground motion can be converted to load cases. [[(% class="wikiinternallink" %)**“Seismic,...”-type load cases**>>path:#load_case_seismic]](%%) behave as static loads: they can be combined, they can be added to groups, and they can be taken into consideration at stability, imperfection and design calculations. As you see in the list of load case types, the seismic effects can be considered with positive and/or negative sign.
913 913  
914 914  [[image:file:///C:/Users/Fredrik/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png||alt="se_97_load%20cases"]]
915 915  
Copyright 2020 StruSoft AB
FEM-Design Wiki