Changes for page Concrete Design

<
From version
edited by IwonaBudny
on 2018/11/29 16:13
To version
edited by IwonaBudny
on 2018/11/29 16:13
>
Change comment: There is no comment for this version

Details

Page properties
Content
 ... ... @@ -73,8 +73,55 @@ 73 73 74 74 = {{id name="Shrinkage as load action"/}}Shrinkage as load action = 75 75 76 +((( 77 +(% style="text-align: justify;" %) 78 +In the Plate and 3D Structure modules the shrinkage behaviour of reinforced concrete slabs can be taken into consideration as load action. The program add this movement effect (specific rotation) calculated from the formulas written be- low to the structure as invisible load (one load case must be defined as Shrinkage type, see User’s Guide ). 76 76 80 +(% class="box warningmessage" style="text-align: justify;" %) 77 77 ((( 82 +Note: The shrinkage effect has to be used together with applied reinforcement. 83 +))) 84 +))) 85 + 86 +The effect of the shrinkage for the surface reinforcement bars in one direction (here X) (it is also valid in other bar directions): 87 + 88 +(% style="text-align: justify;" %) 89 +[[image:1543504152702-119.png||height="413" width="739"]] 90 + 91 + 92 +(% style="text-align: justify;" %) 93 +The specific normal force causing the given shrinkage value (ε,,cs,, [‰] at concrete materials) in the concrete zone of the section is (here in X direction): 94 + 95 +(% class="mark" %)N,,X,, = E,,c ,,A,,c,, ε,,cs,, [kΝ/m] 96 + 97 + 98 +(% style="text-align: justify;" %) 99 +The position change of centre of gravity considering reinforcement bars (here X-direction; see dashed line): 100 + 101 +(% style="text-align: justify;" %) 102 +[[image:1543504296967-109.png||height="60" width="122"]] 103 + 104 +(% style="text-align: justify;" %) 105 +where: 106 + 107 +(% style="text-align: justify;" %) 108 +n = E,,s,, / E,,c ,,and S,,s,, is the statical moment of (here) X-directional bars around the Y axis of the calculation plane. 109 + 110 + 111 +(% style="text-align: justify;" %) 112 +The moment around the Y axis of the calculation plane from N,,X,, because of the position change of centre of gravity: 113 + 114 +(% style="text-align: justify;" %) 115 +(% class="mark" %)M,,Y,, = N,,X,, z,,s,, 116 + 117 + 118 +(% style="text-align: justify;" %) 119 +The specific rotation (curvature) from M,,Y,, for 1 meter wide section: 120 + 121 +[[image:1543504426046-612.png||height="117" width="222"]] 122 + 123 + 124 +((( 78 78 ---- 79 79 ))) 80 80